Sorry, you need to enable JavaScript to visit this website.

Sequential learning; sequential decision methods (MLR-SLER)

Kernel-based low-rank feature extraction on a budget for Big data streams

Paper Details

Authors:
Dimitrios Berberidis, Georgios B. Giannakis
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

Globalsip2015.pdf

(923)

Subscribe

[1] Dimitrios Berberidis, Georgios B. Giannakis, "Kernel-based low-rank feature extraction on a budget for Big data streams", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/434. Accessed: Jul. 20, 2019.
@article{434-15,
url = {http://sigport.org/434},
author = {Dimitrios Berberidis; Georgios B. Giannakis },
publisher = {IEEE SigPort},
title = {Kernel-based low-rank feature extraction on a budget for Big data streams},
year = {2015} }
TY - EJOUR
T1 - Kernel-based low-rank feature extraction on a budget for Big data streams
AU - Dimitrios Berberidis; Georgios B. Giannakis
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/434
ER -
Dimitrios Berberidis, Georgios B. Giannakis. (2015). Kernel-based low-rank feature extraction on a budget for Big data streams. IEEE SigPort. http://sigport.org/434
Dimitrios Berberidis, Georgios B. Giannakis, 2015. Kernel-based low-rank feature extraction on a budget for Big data streams. Available at: http://sigport.org/434.
Dimitrios Berberidis, Georgios B. Giannakis. (2015). "Kernel-based low-rank feature extraction on a budget for Big data streams." Web.
1. Dimitrios Berberidis, Georgios B. Giannakis. Kernel-based low-rank feature extraction on a budget for Big data streams [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/434

GlobalSIP_slides_AEK


This paper considers unconstrained convex optimiza- tion problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of 1{h, where h is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions.

Paper Details

Authors:
Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

globalsip.pdf

(2119)

Subscribe

[1] Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro, "GlobalSIP_slides_AEK", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/367. Accessed: Jul. 20, 2019.
@article{367-15,
url = {http://sigport.org/367},
author = {Andrea Simonetto; Aryan Mokhtari; Geert Leus; Alejandro Ribeiro },
publisher = {IEEE SigPort},
title = {GlobalSIP_slides_AEK},
year = {2015} }
TY - EJOUR
T1 - GlobalSIP_slides_AEK
AU - Andrea Simonetto; Aryan Mokhtari; Geert Leus; Alejandro Ribeiro
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/367
ER -
Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro. (2015). GlobalSIP_slides_AEK. IEEE SigPort. http://sigport.org/367
Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro, 2015. GlobalSIP_slides_AEK. Available at: http://sigport.org/367.
Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro. (2015). "GlobalSIP_slides_AEK." Web.
1. Andrea Simonetto, Aryan Mokhtari, Geert Leus, Alejandro Ribeiro. GlobalSIP_slides_AEK [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/367

CRH: A Simple Benchmark Approach to Continuous Hashing

Paper Details

Authors:
Submitted On:
23 February 2016 - 1:43pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

gsip_mc.pdf

(610)

gsip_mc.pdf

(474)

Subscribe

[1] , "CRH: A Simple Benchmark Approach to Continuous Hashing", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/248. Accessed: Jul. 20, 2019.
@article{248-15,
url = {http://sigport.org/248},
author = { },
publisher = {IEEE SigPort},
title = {CRH: A Simple Benchmark Approach to Continuous Hashing},
year = {2015} }
TY - EJOUR
T1 - CRH: A Simple Benchmark Approach to Continuous Hashing
AU -
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/248
ER -
. (2015). CRH: A Simple Benchmark Approach to Continuous Hashing. IEEE SigPort. http://sigport.org/248
, 2015. CRH: A Simple Benchmark Approach to Continuous Hashing. Available at: http://sigport.org/248.
. (2015). "CRH: A Simple Benchmark Approach to Continuous Hashing." Web.
1. . CRH: A Simple Benchmark Approach to Continuous Hashing [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/248

A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation


Precise estimation of synchronization parameters is essential for reliable
data detection in digital communications and phase errors can
result in significant performance degradation. The literature on estimation
of synchronization parameters, including the carrier frequency
offset, are based on approximations or heuristics because
the optimal estimation problem is analytically intractable for most
cases of interest. We develop an online Bayesian inference procedure
for blind estimation of the frequency offset, for arbitrary signal

Paper Details

Authors:
Keith W. Forsythe
Submitted On:
23 February 2016 - 1:43pm
Short Link:
Type:
Event:

Document Files

SeqBayesInfBlindFreqEst_sigport.pdf

(657)

Subscribe

[1] Keith W. Forsythe, "A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/213. Accessed: Jul. 20, 2019.
@article{213-15,
url = {http://sigport.org/213},
author = {Keith W. Forsythe },
publisher = {IEEE SigPort},
title = {A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation},
year = {2015} }
TY - EJOUR
T1 - A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation
AU - Keith W. Forsythe
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/213
ER -
Keith W. Forsythe. (2015). A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation. IEEE SigPort. http://sigport.org/213
Keith W. Forsythe, 2015. A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation. Available at: http://sigport.org/213.
Keith W. Forsythe. (2015). "A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation." Web.
1. Keith W. Forsythe. A Sequential Bayesian Inference Framework for Blind Frequency Offset Estimation [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/213

Pages