
- Read more about Robust Unstructured Knowledge Access In Conversational Dialogue With ASR Errors
- Log in to post comments
Performance of spoken language understanding (SLU) can be degraded with automatic speech recognition (ASR) errors. We propose a novel approach to improve SLU robustness by randomly corrupting clean training text with an ASR error simulator, followed by self-correcting the errors and minimizing the target classification loss in a joint manner. In the proposed error simulator, we leverage confusion networks generated from an ASR decoder without human transcriptions to generate variety of error patterns for model training.
- Categories:



- Read more about Augmentation strategy optimization for language understanding
- Log in to post comments
- Categories:

- Read more about Augmentation strategy optimization for language understanding
- Log in to post comments
- Categories:

Humans express ideas, beliefs, and statements through language. The manner of expression can carry information indicating the author's degree of confidence in their statement. Understanding the certainty level of a claim is crucial in areas such as medicine, finance, engineering, and many others where errors can lead to disastrous results. In this work, we apply a joint model that leverages words and part-of-speech tags to improve hedge detection in text and achieve a new top score on the CoNLL-2010 Wikipedia corpus.
- Categories:

- Read more about PROGRESSIVE DIALOGUE STATE TRACKING FOR MULTI-DOMAIN DIALOGUE SYSTEMS
- Log in to post comments
There are two critical observations in multi-domain dialogue state tracking (DST) ignored in most existing work. First, the number of triples (domain-slot-value) in dialogue states generally increases with the growth of dialogue turns. Second, although dialogue states are accumulating, the difference between two adjacent turns is steadily minor. To model the two observations, we propose to divide the task into two successive procedures: progressive domain-slot tracking and shrunk value prediction.
- Categories:

- Read more about Novel realizations of speech-driven head movements with generative adversarial networks
- Log in to post comments
Head movement is an integral part of face-to-face communications. It is important to investigate methodologies to generate naturalistic movements for conversational agents (CAs). The predominant method for head movement generation is using rules based on the meaning of the message. However, the variations of head movements by these methods are bounded by the predefined dictionary of gestures. Speech-driven methods offer an alternative approach, learning the relationship between speech and head movements from real recordings.
- Categories:

- Read more about Combining Acoustics, Content and Interaction Features to Find Hot Spots in Meetings
- Log in to post comments
Involvement hot spots have been proposed as a useful concept for meeting analysis and studied off and on for over 15 years. These are regions of meetings that are marked by high participant involvement, as judged by human annotators. However, prior work was either not conducted in a formal machine learning setting, or focused on only a subset of possible meeting features or downstream applications (such as summarization). In this paper we investigate to what extent various acoustic, linguistic and pragmatic aspects of the meetings, both in isolation and jointly, can help detect hot spots.
- Categories:

- Read more about WHAT IS BEST FOR SPOKEN LANGUAGE UNDERSTANDING: SMALL BUT TASK-DEPENDANT EMBEDDINGS OR HUGE BUT OUT-OF-DOMAIN EMBEDDINGS?
- Log in to post comments
Word embeddings are shown to be a great asset for several Natural Language and Speech Processing tasks. While they are already evaluated on various NLP tasks, their evaluation on spoken or natural language understanding (SLU) is less studied. The goal of this study is two-fold: firstly, it focuses on semantic evaluation of common word embeddings approaches for SLU task; secondly, it investigates the use of two different data sets to train the embeddings: small and task-dependent corpus or huge and out-of-domain corpus.
- Categories: