Sorry, you need to enable JavaScript to visit this website.

We propose a semi-supervised learning method to improve classification performance in scenarios with limited labeled
data. We employ adaptation strategies such as entropy-filtering and self-training, and show that our method achieves

Categories:
17 Views

In this work, we investigate mapping both natural language food and quantity descriptions to matching USDA database entries. We demonstrate that a convolutional neural network (CNN) model with a softmax layer on top to directly predict the most likely database matches outperforms our previous state-of-the-art approach of learning binary classification and subsequently ranking database entries using similarity scores with the learned embeddings.

Categories:
6 Views

Natural language processing research has made major advances with the concept of representing words, sentences, paragraphs, and even documents by embedded vector representations. We apply this idea to the problem of relating foods, as expressed in natural language meal descriptions, to corresponding database entries. We generate fixed-length embeddings for U.S.

Categories:
8 Views

As part of an ongoing research into extracting mission-critical information from Search and Rescue speech communications, a corpus of unscripted, goal-oriented, two-party spoken conversations has been designed and collected. The Sheffield Search and Rescue (SSAR) corpus comprises about 12 hours of data from 96 conversations by 24 native speakers of British English with a southern accent. Each conversation is about a collaborative task of exploring and estimating a simulated indoor environment.

Categories:
4 Views

This study presents an approach to dialog state tracking (DST) in an interview conversation by using the long short-term memory (LSTM) and artificial neural network (ANN). First, the techniques of word embedding are employed for word representation by using the word2vec model. Then, each input sentence is represented by a sentence hidden vector using the LSTM-based sentence model. The sentence hidden vectors for each sentence are fed to the LSTM-based answer model to map the interviewee’s answer to an answer hidden vector.

Categories:
1 Views

This study presents an approach to dialog state tracking (DST) in an interview conversation by using the long short-term memory (LSTM) and artificial neural network (ANN). First, the techniques of word embedding are employed for word representation by using the word2vec model. Then, each input sentence is represented by a sentence hidden vector using the LSTM-based sentence model. The sentence hidden vectors for each sentence are fed to the LSTM-based answer model to map the interviewee’s answer to an answer hidden vector.

Categories:
2 Views

Spoken language interfaces are being incorporated into various devices such as smart phones and TVs. However, dialogue systems may fail to respond correctly when users’ request functionality is not supported by currently installed apps. This paper proposes a feature-enriched matrix factorization (MF) approach to model open domain intents, which allows a system to dynamically add unexplored domains according to users’ requests.

Categories:
9 Views

The recent surge of intelligent personal assistants motivates spoken language understanding of dialogue systems. However, the domain constraint along with the inflexible intent schema remains a big issue. This paper focuses on the task of intent expansion, which helps remove the domain limit and make an intent schema flexible. A convolutional deep structured semantic model (CDSSM) is applied to jointly learn the representations for human intents and associated utterances.

Categories:
16 Views

Pages