
Lecture notes for undergraduate and first-year graduate students on digital watermarking and data embedding in multimedia data.
Based on lectures developed at University of Maryland, College Park, USA.
- Categories:

- Read more about A study on the invariance in security whatever the dimension of images for the steganalysis by deep-learning
- Log in to post comments
In this paper, we study the performance invariance of convolutional neural networks when confronted with variable image sizes in the context of a more ”wild steganalysis”. First, we propose two algorithms and definitions for a fine experimental protocol with datasets owning ”similar difficulty” and ”similar security”. The ”smart crop 2” algorithm allows the introduction of the Nearly Nested Image Datasets (NNID) that ensure ”a similar difficulty” between various datasets, and a dichotomous research algorithm allows a ”similar security”.
- Categories:

- Read more about Mixer: DNN Watermarking using Image Mixup
- Log in to post comments
It is crucial to protect the intellectual property rights of DNN models prior to their deployment. The
DNN should perform two main tasks: its primary task and watermarking task. This paper proposes
a lightweight, reliable, and secure DNN watermarking that attempts to establish strong ties between
these two tasks. The samples triggering the watermarking task are generated using image Mixup
either from training or testing samples. This means that there is an infinity of triggers not limited to the
- Categories:

Generative models are now capable of synthesizing images, speeches, and videos that are hardly distinguishable from authentic contents. Such capabilities cause concerns such as malicious impersonation and IP theft. This paper investigates a solution for model attribution, i.e., the classification of synthetic contents by their source models via watermarks embedded in the contents.
- Categories:

Steganography comprises the mechanics of hiding data in a host media that may be publicly available. While previous works focused on unimodal setups (e.g., hiding images in images, or hiding audio in audio), PixInWav targets the multimodal case of hiding images in audio. To this end, we propose a novel residual architecture operating on top of short-time discrete cosine transform (STDCT) audio spectrograms. Among our results, we find that the residual steganography setup we propose allows an encoding of the hidden image that is independent from the host audio without compromising quality.
- Categories:

- Read more about Watermarking images in self-supervised latent-spaces - poster
- Log in to post comments
- Categories:

- Read more about Watermarking images in self-supervised latent-spaces - slides
- Log in to post comments
- Categories:

Deep neural network (DNN) watermarking is one of the main techniques to protect the DNN. Although various DNN watermarking schemes have been proposed, none of them is able to resist the DNN encryption. In this paper, we propose an encryption resistent DNN watermarking scheme, which is able to resist the parameter shuffling based DNN encryption. Unlike the existing schemes which use the kernels separately for watermarking embedding, we propose to embed the watermark into the fused kernels to resist the parameter shuffling.
- Categories:

- Read more about Homomorphic Two Tier Reversible Data Hiding in Encrypted 3D Objects
- Log in to post comments
Today, 3D objects are an increasingly popular form of media. It has become necessary to secure them during their transmission or archiving. In this paper, we propose a two tier reversible data hiding method for 3D objects in the encrypted domain. Based on the homomorphic properties of the Paillier cryptosystem, our proposed method embeds a first tier message in the encrypted domain which can be extracted in either the encrypted domain or the clear domain. Indeed, our method produces a marked 3D object which is visually very similar to the original object.
- Categories:

- Read more about Extending the Reverse JPEG Compatibility Attack to Double Compressed Images
- Log in to post comments
- Categories: