Sorry, you need to enable JavaScript to visit this website.

In this paper, we explore the use of graph-basedtransforms to capture correlation in light fields. We consider a scheme in which view synthesis is used as a first step to exploit inter-view correlation. Local graph-based transforms (GT) are then considered for energy compaction of the residue signals. The structure of the local graphs is derived from a coherent super-pixel over-segmentation of the different views. The GT is computed and applied in a separable manner with a first spatial unweighted transform followed by an inter-view GT.

Categories:
11 Views

Rate-constrained motion estimation (RCME) is the most computationally intensive task of H.265/HEVC encoding. Massively parallel architectures, such as graphics processing units (GPUs), used in combination with a multi-core central processing unit (CPU), provide a promising computing platform to achieve fast encoding. However, the dependencies in deriving motion vector predictors (MVPs) prevent the parallelization of prediction units (PUs) processing at a frame level.

Categories:
42 Views

This poster describes a light field scalable compression scheme based on the sparsity of the angular Fourier transform of the light field. A subset of sub-aperture images (or views) is compressed using HEVC as a base layer and transmitted to the decoder. An entire light field is reconstructed from this view subset using a method exploiting the sparsity of the light field in the continuous Fourier domain. The reconstructed light field is enhanced using a patch-based restoration method. Then, restored samples are used to predict original ones, in a SHVC-based SNR-scalable scheme.

Categories:
13 Views

Pages