- Watermarking and Steganography
- Signal Processing and Cryptography
- Multimedia Forensics
- Communications and Network Security
- Biometrics
- Applications

The Internet has created vast opportunities to interact with strangers. The interactions can be fun, informative, and even profitable [1]. However, there is also risk involved. Will an eBay seller ship the product in time? Is the advice from a self-proclaimed expert on Epinion.com trustworthy? Does a product from Amazon.com have high quality as described?
The full version of the paper is available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6153140&tag=1
- Categories:

The vulnerability analysis is vital for safely running power grids. The simultaneous attack, which applies multiple failures simultaneously, does not consider the time domain in applying failures, and is limited to find unknown vulnerabilities of power grid networks. In this paper, we discover a new attack scenario, called the sequential attack, in which the failures of multiple network components (i.e., links/nodes) occur at different time. The sequence of such failures can be carefully arranged by attackers in order to maximize attack performances.
- Categories:

In the study of power grid security, the cascading failure analysis in multi-contingency scenarios has been a challenge due to its topological complexity and computational cost. Both network analyses and load ranking methods have their own limitations. In this paper, based on self-organizing map (SOM), we propose an integrated approach combining spatial feature (distance)-based clustering with electrical characteristics (load) to assess the vulnerability and cascading effect of multiple component sets in the power grid.
- Categories:

Security issues related to power grid networks have attracted the attention of researchers in many fields. Recently, a new network model that combines complex network theories with power flow models was proposed. This model, referred to as the extended model, is suitable for investigating vulnerabilities in power grid networks. In this paper, we study cascading failures of power grids under the extended model. Particularly, we discover that attack strategies that select target nodes (TNs) based on load and degree do not yield the strongest attacks.
- Categories: