Sorry, you need to enable JavaScript to visit this website.

A common approach for enabling remote radiologists to view medical images is to provide them with secure access to a cloud instance using a web-based application. Such solutions must transcode input images or videos to low latency, lossless bit streams and make them available to remote users. The heart of the solution is the highly efficient, low-latency, and hardware-agnostic compression scheme. This poster surveys potential codecs for the low-latency, lossless compression of 16-bit RAW monochrome medical images and compares the compression ratio and encode time for each.


Accurate disease diagnosis requires objective assessment of clinical image quality. Automated image quality assessment (IQA) could enhance screening and diagnosis workflows. However, development of generalizable quality assessment tools requires large labeled clinical image datasets from different sites. Obtaining these datasets is often infeasible; and quality indicators may vary with acquisition settings due to domain shift. We introduce a minimally-supervised


In ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way.


Accurately tracking large tissue motion over a sequence of ultrasound images is critically important to several clinical applications including, but not limited to, elastography, flow imaging, and ultrasound-guided motion compensation. However, tracking in vivo large tissue deformation in 3D is a challenging problem and requires further developments. In this study, we explore a novel tracking strategy that combines Bayesian inference with local polynomial fitting.


Existing physical model-based imaging methods for ultrasound elasticity reconstruction utilize fixed variational regularizers that may not be appropriate for the application of interest or may not capture complex spatial prior information about the underlying tissues. On the other hand, end-to-end learning-based methods count solely on the training data, not taking advantage of the governing physical laws of the imaging system.


There is growing interest in the use of deep neural network
(DNN) based image denoising to reduce patient’s X-ray
dosage in medical computed tomography (CT). An effective
denoiser must remove noise while maintaining the texture
and detail. Commonly used mean squared error (MSE) loss
functions in the DNN training weight errors due to bias and
variance equally. However, the error due to bias is often more
egregious since it results in loss of image texture and detail.
In this paper, we present a novel approach to designing a loss


In this paper, we present a novel Image Fusion Model
(IFM) for ECG heart-beat classification to overcome the
weaknesses of existing machine learning techniques that rely
either on manual feature extraction or direct utilization of 1D
raw ECG signal. At the input of IFM, we first convert the
heart-beats of ECG into three different images using Gramian
Angular Field (GAF), Recurrence Plot (RP) and Markov
Transition Field (MTF) and then fuse these images to create


Conventional Computed Tomography (CT) systems use a single X-ray source and an arc of detectors mounted on a rotating gantry to acquire a set of projection data. Novel CT systems are now being pioneered in which a complete ring of distributed X-ray sources and detectors are electronically turned on and off, without any mechanical motion, to acquire a set of projections for tomographic reconstruction. This paper discusses new sensing and reconstruction paradigms enabled by this new CT architecture.


The development of compressed sensing (CS) techniques for magnetic resonance imaging (MRI) is enabling a speedup of MRI scanning. To increase the incoherence in the sampling, a random selection of points on the k-space is deployed and a continuous trajectory is obtained by solving a traveling salesman problem (TSP) through these points. A feasible trajectory satisfying the gradient constraints is then obtained by parameterizing it using state-of-the-art methods. In this paper, a constrained convex optimization based method to obtain feasible trajectories is proposed.