Sorry, you need to enable JavaScript to visit this website.

In the last few years, social media networks have changed human life experience and behavior as it has broken down communication barriers, allowing ordinary people to actively produce multimedia content on a massive scale. On this wise, the information dissemination in social media platforms becomes increasingly common. However, misinformation is propagated with the same facility and velocity as real news, though it can result in irreversible damage to an individual or society at large.

Categories:
44 Views

Images captured nowadays are of varying dimensions with smartphones and DSLR’s allowing users to choose from a list of available image resolutions. It is therefore imperative for forensic algorithms such as resampling detection to scale well for images of varying dimensions. However, in our experiments we observed that many state-of-the-art forensic algorithms are sensitive to image size and their performance quickly degenerates when operated on images of diverse dimensions despite re-training them using multiple image sizes.

Categories:
33 Views

Latent fingerprint reconstruction is a vital preprocessing step for its identification. This task is very challenging due to not only existing complicated degradation patterns but also its scarcity of paired training data. To address these challenges, we propose a novel generative adversarial network (GAN) based data augmentation scheme to improve such reconstruction.

Categories:
17 Views

In this paper, we apply cross-layer intersection mechanism to dense u-net for image forgery detection and localization. We first train DenseNet for binary classification. Spatial rich model (SRM) filters are adopted for capturing residual signals in the detected images. Then we propose a new approach to preserve complete feature maps of fully connected layer and consider them as the spatial decision information for image segmentation.

Categories:
64 Views

Backdoor attacks against CNNs represent a new threat against deep learning systems, due to the possibility of corrupting the training set so to induce an incorrect behaviour at test time. To avoid that the trainer recognises the presence of the corrupted samples, the corruption of the training set must be as stealthy as possible. Previous works have focused on the stealthiness of the perturbation injected into the training samples, however they all assume that the labels of the corrupted samples are also poisoned.

Categories:
38 Views

Electric Network Frequency (ENF) analysis is a promising forensic technique for authenticating digital recordings and detecting tampering within the recordings. The validity of ENF analysis heavily relies on high-quality ENF signals extracted from multimedia recordings. In this paper, we propose an ENF signal extraction method for rolling shutter acquired videos using periodic zero-padding. Our analysis shows that the extracted ENF signals using the proposed method are not distorted and the component with the highest signal-to-noise ratio is located at the intrinsic frequency.

Categories:
229 Views

ENF (Electric Network Frequency) oscillates around a nominal value (50/60 Hz) due to imbalance between consumed and generated power. The intensity of a light source powered by mains electricity varies depending on the ENF fluctuations. These fluctuations can be extracted from videos recorded in the presence of mains-powered source illumination. This work investigates how the quality of the ENF signal estimated from video is affected by different light source illumination, compression ratios, and by social media encoding.

Categories:
185 Views

Pages