Sorry, you need to enable JavaScript to visit this website.

Bio Imaging and Signal Processing

SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES


The study of vascular morphometry requires segmenting vessels with high precision. Of particular clinical interest is the morphometric analysis of arterial bifurcations in Adaptive Optics Ophthalmoscopy (AOO) images of eye fundus. In this paper, we extend our previous approach for segmenting retinal vessel branches to the segmentation of bifurcations. This enables us to recover the microvascular tree and extract biomarkers that charactarize the blood flow.

Paper Details

Authors:
Florence ROSSANT, Isabelle BLOCH, Michel PAQUES
Submitted On:
15 September 2019 - 3:21pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster ICIP-2019 Iyed Trimeche.pdf

(18)

Keywords

Additional Categories

Subscribe

[1] Florence ROSSANT, Isabelle BLOCH, Michel PAQUES, "SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4623. Accessed: Nov. 12, 2019.
@article{4623-19,
url = {http://sigport.org/4623},
author = {Florence ROSSANT; Isabelle BLOCH; Michel PAQUES },
publisher = {IEEE SigPort},
title = {SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES},
year = {2019} }
TY - EJOUR
T1 - SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES
AU - Florence ROSSANT; Isabelle BLOCH; Michel PAQUES
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4623
ER -
Florence ROSSANT, Isabelle BLOCH, Michel PAQUES. (2019). SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES. IEEE SigPort. http://sigport.org/4623
Florence ROSSANT, Isabelle BLOCH, Michel PAQUES, 2019. SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES. Available at: http://sigport.org/4623.
Florence ROSSANT, Isabelle BLOCH, Michel PAQUES. (2019). "SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES." Web.
1. Florence ROSSANT, Isabelle BLOCH, Michel PAQUES. SEGMENTATION OF RETINAL ARTERIAL BIFURCATIONS IN 2D ADAPTIVE OPTICS OPHTHALMOSCOPY IMAGES [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4623

Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data


Adaptive subspace detectors (ASD) generalize matched subspace detectors (MSD) by accounting for possible correlation. Both ASD and MSD are derived using the generalized likelihood ratio test (GLRT). While MSD assumes there is no correlation between observations, ASD estimates a sample covariance matrix of possibly correlated samples using signal-free observations. In this paper, we address the performance of the ASD when the number of secondary data is insufficient and the observed signal lies in higher dimensional space.

Paper Details

Authors:
Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans
Submitted On:
10 May 2019 - 2:26am
Short Link:
Type:
Event:

Document Files

ICASSP-Poster.pdf

(46)

Subscribe

[1] Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans, "Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4274. Accessed: Nov. 12, 2019.
@article{4274-19,
url = {http://sigport.org/4274},
author = {Aref Miri Rekavandi; Abd-Krim Seghouane; Robin J. Evans },
publisher = {IEEE SigPort},
title = {Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data},
year = {2019} }
TY - EJOUR
T1 - Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data
AU - Aref Miri Rekavandi; Abd-Krim Seghouane; Robin J. Evans
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4274
ER -
Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans. (2019). Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data. IEEE SigPort. http://sigport.org/4274
Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans, 2019. Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data. Available at: http://sigport.org/4274.
Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans. (2019). "Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data." Web.
1. Aref Miri Rekavandi, Abd-Krim Seghouane, Robin J. Evans. Adaptive Subspace Detector in High Dimensional Space with Insufficient Training Data [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4274

Adaptive Multi-Trace Carving Based on Dynamic Programming


In this work, we study the problem of tracking multiple frequency components in a noisy signal using a spectrogram-based method. Previous approaches such as image processing based or hidden Markov model-based methods may not be capable of tracking multiple frequency components, may require extensive training, and may be time-consuming. To address these issues, we propose an accurate and efficient method named Adaptive Multi-Trace Carving (AMTC) for tracking multiple frequency traces by iterative forward and backward dynamic programming and adaptive trace compensation.

Paper Details

Authors:
Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu
Submitted On:
7 March 2019 - 10:50am
Short Link:
Type:
Document Year:
Cite

Document Files

[PDF] AMTC Asilomar 2018 poster

(89)

Subscribe

[1] Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu, "Adaptive Multi-Trace Carving Based on Dynamic Programming", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/3845. Accessed: Nov. 12, 2019.
@article{3845-19,
url = {http://sigport.org/3845},
author = {Qiang Zhu; Mingliang Chen; Chau-Wai Wong; Min Wu },
publisher = {IEEE SigPort},
title = {Adaptive Multi-Trace Carving Based on Dynamic Programming},
year = {2019} }
TY - EJOUR
T1 - Adaptive Multi-Trace Carving Based on Dynamic Programming
AU - Qiang Zhu; Mingliang Chen; Chau-Wai Wong; Min Wu
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/3845
ER -
Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu. (2019). Adaptive Multi-Trace Carving Based on Dynamic Programming. IEEE SigPort. http://sigport.org/3845
Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu, 2019. Adaptive Multi-Trace Carving Based on Dynamic Programming. Available at: http://sigport.org/3845.
Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu. (2019). "Adaptive Multi-Trace Carving Based on Dynamic Programming." Web.
1. Qiang Zhu, Mingliang Chen, Chau-Wai Wong, Min Wu. Adaptive Multi-Trace Carving Based on Dynamic Programming [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/3845

NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER


Monitoring sleep quality and status is important to learn health condition for improvement and prevent sleep apnea. A bed-mounted seismometer system is proposed to monitor the heart and respiratory rates, and body movement and posture, during the sleep. To effectively monitor sleep status, an innovative local maxima statistics based approach and an instantaneous property based method are developed to estimate heart and respiratory rates, respectively. These methods are more robust and stable compared to previous works.

Paper Details

Authors:
Fangyu Li, Jose Clemente, WenZhan Song
Submitted On:
18 November 2018 - 4:25pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:

Document Files

globalsip-sleep-monitoring.pdf

(85)

Subscribe

[1] Fangyu Li, Jose Clemente, WenZhan Song, "NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3681. Accessed: Nov. 12, 2019.
@article{3681-18,
url = {http://sigport.org/3681},
author = {Fangyu Li; Jose Clemente; WenZhan Song },
publisher = {IEEE SigPort},
title = {NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER},
year = {2018} }
TY - EJOUR
T1 - NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER
AU - Fangyu Li; Jose Clemente; WenZhan Song
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3681
ER -
Fangyu Li, Jose Clemente, WenZhan Song. (2018). NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER. IEEE SigPort. http://sigport.org/3681
Fangyu Li, Jose Clemente, WenZhan Song, 2018. NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER. Available at: http://sigport.org/3681.
Fangyu Li, Jose Clemente, WenZhan Song. (2018). "NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER." Web.
1. Fangyu Li, Jose Clemente, WenZhan Song. NON-INTRUSIVE AND NON-CONTACT SLEEP MONITORING WITH SEISMOMETER [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3681

BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES


Time-lapse microscopy provides 4D imaging data for monitoring and studying down to single-cell, the stochastic processes involved as bacterial colonies grow and interact under different stress conditions. Two main factors prevent high throughput analysis: a) cell segmentation and tracking are very time-consuming and error-prone and b) analytics tools are lacking to interpret the plethora of features extracted from a complex “cell-movie.” To address both limitations, we have recently developed a multi-resolution Bio-image Analysis & Single-Cell Analytics framework, called BaSCA.

Paper Details

Authors:
Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos
Submitted On:
8 October 2018 - 9:46am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES POSTER

(105)

Keywords

Additional Categories

Subscribe

[1] Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos, "BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3634. Accessed: Nov. 12, 2019.
@article{3634-18,
url = {http://sigport.org/3634},
author = {Athanasios D. Balomenos; Victoria Stefanou; Elias S. Manolakos },
publisher = {IEEE SigPort},
title = {BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES},
year = {2018} }
TY - EJOUR
T1 - BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES
AU - Athanasios D. Balomenos; Victoria Stefanou; Elias S. Manolakos
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3634
ER -
Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos. (2018). BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES. IEEE SigPort. http://sigport.org/3634
Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos, 2018. BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES. Available at: http://sigport.org/3634.
Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos. (2018). "BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES." Web.
1. Athanasios D. Balomenos, Victoria Stefanou, Elias S. Manolakos. BACTERIAL IMAGE ANALYSIS AND SINGLE-CELL ANALYTICS TO DECIPHER THE BEHAVIOR OF LARGE MICROBIAL COMMUNITIES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3634

ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES


In this work we analyze the impact of denoising, contrast and edge enhancement using the Deceived Non Local Means (DNLM) filter in a Convolutional Neural Network (CNN) based approach for age estimation using digital X-ray images from hands. The DNLM filter contains two parameters which control edge enhancement and denoising. Increasing levels were tested to assess the impact of both contrast enhancement and denoising in the CNN based model regression accuracy.

Paper Details

Authors:
S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+
Submitted On:
6 October 2018 - 8:15am
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

POSTER2_ICIP2018.pdf

(101)

Subscribe

[1] S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+, "ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3573. Accessed: Nov. 12, 2019.
@article{3573-18,
url = {http://sigport.org/3573},
author = {S. Calderon?; F. Fallas†; M. Zumbado‡; P. N. Tyrrell±; H. Stark; Z. Emersic§; B. Medeno; M. Solis+ },
publisher = {IEEE SigPort},
title = {ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES},
year = {2018} }
TY - EJOUR
T1 - ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES
AU - S. Calderon?; F. Fallas†; M. Zumbado‡; P. N. Tyrrell±; H. Stark; Z. Emersic§; B. Medeno; M. Solis+
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3573
ER -
S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+. (2018). ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES. IEEE SigPort. http://sigport.org/3573
S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+, 2018. ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES. Available at: http://sigport.org/3573.
S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+. (2018). "ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES." Web.
1. S. Calderon?, F. Fallas†, M. Zumbado‡, P. N. Tyrrell±, H. Stark, Z. Emersic§, B. Medeno, M. Solis+. ASSESSINGTHEIMPACTOFTHEDECEIVEDNONLOCALMEANSFILTERASA PREPROCESSINGSTAGEINACONVOLUTIONALNEURALNETWORKBASED APPROACHFORAGEESTIMATIONUSINGDIGITALHANDX-RAYIMAGES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3573

MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES

Paper Details

Authors:
Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar
Submitted On:
5 October 2018 - 12:09pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

icip_poster (1).pdf

(42)

Subscribe

[1] Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar, "MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3545. Accessed: Nov. 12, 2019.
@article{3545-18,
url = {http://sigport.org/3545},
author = {Prabhjot Kaur; Aditya Sharma; Aditya Nigam; Arnav Bhavsar },
publisher = {IEEE SigPort},
title = {MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES},
year = {2018} }
TY - EJOUR
T1 - MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES
AU - Prabhjot Kaur; Aditya Sharma; Aditya Nigam; Arnav Bhavsar
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3545
ER -
Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar. (2018). MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES. IEEE SigPort. http://sigport.org/3545
Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar, 2018. MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES. Available at: http://sigport.org/3545.
Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar. (2018). "MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES." Web.
1. Prabhjot Kaur, Aditya Sharma, Aditya Nigam, Arnav Bhavsar. MR-SRNET: TRANSFORMATION OF LOW FIELD MR IMAGES TO HIGH FIELD MR IMAGES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3545

SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES

Paper Details

Authors:
Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti
Submitted On:
5 October 2018 - 4:35am
Short Link:
Type:
Event:
Document Year:
Cite

Document Files

IcipPosterEdit.pdf

(112)

Subscribe

[1] Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti , "SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3520. Accessed: Nov. 12, 2019.
@article{3520-18,
url = {http://sigport.org/3520},
author = {Marina E. Plissiti; P. Dimitrakopoulos; G. Sfikas; Christophoros Nikou; O. Krikoni; A. Charchanti },
publisher = {IEEE SigPort},
title = {SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES},
year = {2018} }
TY - EJOUR
T1 - SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES
AU - Marina E. Plissiti; P. Dimitrakopoulos; G. Sfikas; Christophoros Nikou; O. Krikoni; A. Charchanti
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3520
ER -
Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti . (2018). SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES. IEEE SigPort. http://sigport.org/3520
Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti , 2018. SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES. Available at: http://sigport.org/3520.
Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti . (2018). "SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES." Web.
1. Marina E. Plissiti, P. Dimitrakopoulos, G. Sfikas, Christophoros Nikou, O. Krikoni, A. Charchanti . SIPAKMED: A NEW DATASET FOR FEATURE AND IMAGE BASED CLASSIFICATION OF NORMAL AND PATHOLOGICAL CERVICAL CELLS IN PAP SMEAR IMAGES [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3520

INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS


Optical coherence tomography (OCT) is a powerful method for imaging the retinal layers. In this paper, we develop a novel 3D fully convolutional deep architecture for automated segmentation of retinal layers in OCT scans. This model extracts features from both the spatial and the inter-frame dimensions by performing 3D convolutions, thereby capturing the information encoded in multiple adjacent frames.

Paper Details

Authors:
Submitted On:
5 October 2018 - 3:33am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

poster.pdf

(119)

Subscribe

[1] , "INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3511. Accessed: Nov. 12, 2019.
@article{3511-18,
url = {http://sigport.org/3511},
author = { },
publisher = {IEEE SigPort},
title = {INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS},
year = {2018} }
TY - EJOUR
T1 - INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3511
ER -
. (2018). INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS. IEEE SigPort. http://sigport.org/3511
, 2018. INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS. Available at: http://sigport.org/3511.
. (2018). "INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS." Web.
1. . INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING 3D FULLY CONVOLUTIONAL NETWORKS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3511

Deep Tree Models for ‘Big’ Biological Data


The identification of useful temporal dependence structure in discrete time series data is an important component of algorithms applied to many tasks in statistical inference and machine learning, and used in a wide variety of problems across the spectrum of biological studies. Most of the early statistical approaches were ineffective in practice, because the amount of data required for reliable modelling grew exponentially with memory length.

Paper Details

Authors:
Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou
Submitted On:
24 June 2018 - 9:36am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

Kontoyianni_slides.pdf

(157)

Subscribe

[1] Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou, "Deep Tree Models for ‘Big’ Biological Data", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3320. Accessed: Nov. 12, 2019.
@article{3320-18,
url = {http://sigport.org/3320},
author = {Lambros Mertzanis; Athina Panotopoulou; Maria Skoularidou },
publisher = {IEEE SigPort},
title = {Deep Tree Models for ‘Big’ Biological Data},
year = {2018} }
TY - EJOUR
T1 - Deep Tree Models for ‘Big’ Biological Data
AU - Lambros Mertzanis; Athina Panotopoulou; Maria Skoularidou
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3320
ER -
Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou. (2018). Deep Tree Models for ‘Big’ Biological Data. IEEE SigPort. http://sigport.org/3320
Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou, 2018. Deep Tree Models for ‘Big’ Biological Data. Available at: http://sigport.org/3320.
Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou. (2018). "Deep Tree Models for ‘Big’ Biological Data." Web.
1. Lambros Mertzanis, Athina Panotopoulou, Maria Skoularidou. Deep Tree Models for ‘Big’ Biological Data [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3320

Pages