Sorry, you need to enable JavaScript to visit this website.

Spatiotemporal regularized Discriminative Correlation Filters (DCF) have been proposed recently for visual tracking, achieving state-of-the-art performance. However, the tracking performance of the online learning model used in this kind methods is highly dependent on the quality of the appearance feature of the target, and the target feature appearance could be heavily deformed due to the occlusion by other objects or the variations in their dynamic self-appearance. In this paper, we propose a new approach to mitigate these two kinds of appearance deformation.

Categories:
15 Views

Collecting a large number of reliable training images annotated by multiple land-cover class labels in the framework of multi-label classification is time-consuming and costly in remote sensing (RS). To address this problem, publicly available thematic products are often used for annotating RS images with zero-labeling-cost. However, such an approach may result in constructing a training set with noisy multi-labels, distorting the learning process. To address this problem, we propose a Consensual Collaborative Multi-Label Learning (CCML) method.

Categories:
18 Views

Thermal images reveal medically important physiological information about human stress, signs of inflammation, and emotional mood that cannot be seen on visible images. Providing a method to generate thermal faces from visible images would be highly valuable for the telemedicine community in order to show this medical information. To the best of our knowledge, there are limited works on visible-to-thermal (VT) face translation, and many current works go the opposite direction to generate visible faces from thermal surveillance images (TV) for law enforcement applications.

Categories:
10 Views

Plug-and-play (PnP) methods have recently emerged as a powerful
framework for image reconstruction that can flexibly combine different
physics-based observation models with data-driven image priors
in the form of denoisers, and achieve state-of-the-art image reconstruction
quality in many applications. In this paper, we aim to further
improve the computational efficacy of PnP methods by designing
a new algorithm that makes use of stochastic variance-reduced
gradients (SVRG), a nascent idea to accelerate runtime in stochastic

Categories:
14 Views

Camera pose estimation plays a crucial role in stitching overlapped images captured by a camera to achieve a broad view of interest. In this paper, we propose a robust camera pose estimation approach to stitching images of a large 3D surface with known geometry. In particular, given a collection of images, we first construct a relative pose matrix estimation of all image pairs from the collection, where each entry of the matrix is calculated by solving a perspective-n-point(PnP) problem over the corresponding pair of images.

Categories:
8 Views

Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory's advantages in compressive spectral imaging tasks, a real optical implementation has not been proposed.

Categories:
5 Views

Pages