Sorry, you need to enable JavaScript to visit this website.

ICIP 2021 - The International Conference on Image Processing (ICIP), sponsored by the IEEE Signal Processing Society, is the premier forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and applied image and video processing. ICIP has been held annually since 1994, brings together leading engineers and scientists in image and video processing from around the world. Visit website.

Accurately tracking large tissue motion over a sequence of ultrasound images is critically important to several clinical applications including, but not limited to, elastography, flow imaging, and ultrasound-guided motion compensation. However, tracking in vivo large tissue deformation in 3D is a challenging problem and requires further developments. In this study, we explore a novel tracking strategy that combines Bayesian inference with local polynomial fitting.

Categories:
Views

Benefiting from learning the residual between low resolution (LR) image and high resolution (HR) image, image super-resolution (SR) networks demonstrate superior reconstruction performance in recent studies. However, for the images with rich texture information, the residuals are complex and difficult for networks to learn. To address this problem, we propose a recurrent residual refinement network (RRRN) to gradually refine the residual with a recurrent structure.

Categories:
2 Views

We develop a variational retinex algorithm for enhancing single underwater image with multiorder gradient priors of reflectance and illumination. First, a simple yet effective color correction approach is used to remove color casts and recover naturalness. Then, a variational retinex model for enhancing the color-corrected underwater image is established by imposing multiorder gradient priors of reflectance and illumination.

Categories:
4 Views

Visual impairment is one of the most serious social and public health problems in the world, therefore, it is of great theoretical and practical significance to study the image enhancement algorithms for the visually impaired, which is the basis for the development of assistive devices. In this paper, a general deep learning based image enhancement framework for the visually impaired is proposed, which can be used to enhance images to compensate for any visually impaired symptom that can be modeled.

Categories:
2 Views

We propose a ghost-free high dynamic range (HDR) image synthesis algorithm by unrolling low-rank matrix completion. By exploiting the low-rank structure of the irradiance maps from low dynamic range (LDR) images, we formulate ghost-free HDR imaging as a general low-rank matrix completion problem. Then, we solve the problem iteratively using the augmented Lagrange multiplier (ALM) method. At each iteration, the optimization variables are updated by closed-form solutions and the regularizers are updated by learned deep neural networks.

Categories:
3 Views

Pages