Sorry, you need to enable JavaScript to visit this website.

Humans have an incredible ability to process and understand
information from multiple sources such as images,
video, text, and speech. Recent success of deep neural
networks has enabled us to develop algorithms which give
machines the ability to understand and interpret this information.
There is a need to both broaden their applicability and
develop methods which correlate visual information along
with semantic content. We propose a unified model which
jointly trains on images and captions, and learns to generate

Categories:
12 Views

A promising way to deploy Artificial Intelligence (AI)-based services on mobile devices is to run a part of the AI model (a deep neural network) on the mobile itself, and the rest in the cloud. This is sometimes referred to as collaborative intelligence. In this framework, intermediate features from the deep network need to be transmitted to the cloud for further processing. We study the case where such features are used for multiple purposes in the cloud (multi-tasking) and where they need to be compressible in order to allow efficient transmission to the cloud.

Categories:
45 Views

In recent years, it has become a trend for people to manipulate their own portraits before posting them on a social networking service. However, it is difficult to get a desired portrait after manipulation without sufficient experience or skill. To obtain a simpler and more effective portrait manipulation technique, we consider an automated portrait manipulation method based on five impression words: clear, sweet, elegant, modern, and dynamic.

Categories:
49 Views

While current landmark detection algorithms offer a good approximation of the landmark locations, they are often unsuitable for the use in biological research. We present multimodal landmark detection approach, based on Point distribution model that detects a larger number of anthropologically relevant landmarks than the current landmark detection algorithms.
At the same time we show that improving detection accuracy of initial vertices, using image information, to which

Categories:
38 Views

Accurate and robust visual localization under a wide range of viewing condition variations including season and illumination changes, as well as weather and day-night variations, is the key component for many computer vision and robotics applications. Under these conditions, most traditional methods would fail to locate the camera. In this paper we present a visual localization algorithm that combines structure-based method and image-based method with semantic information.

Categories:
36 Views

Pages