- Read more about Self-supervised learning for infant cry analysis
- Log in to post comments
In this paper, we explore self-supervised learning (SSL) for analyzing a first-of-its-kind database of cry recordings containing clinical indications of more than a thousand newborns. Specifically, we target cry-based detection of neurological injury as well as identification of cry triggers such as pain, hunger, and discomfort.
- Categories:
- Read more about Cross-site Generalization for imbalanced epileptic classification
- Log in to post comments
Recently, many studies have been conducted on automated epileptic seizures detection. However, few of these techniques are applied in clinical settings for several reasons. One of them is the imbalanced nature of the seizure detection task. Additionally, the current detection techniques do not really generalize to other patient populations. To address these issues, we present in this paper a hybrid CNN-LSTM model robust to cross-site variability. We investigate the use of data augmentation (DA) methods as an efficient tool to solve imbalanced training problems.
- Categories:
- Read more about Rate-Distortion-Classification Model In Lossy Image Compression
- 1 comment
- Log in to post comments
Rate-distortion (RD) theory is a fundamental theory for lossy image compression that treats compressing the original images to a specified bitrate with minimal signal distortion, which is an essential metric in practical application. Moreover, with the development of visual analysis applications (such as classification, detection, segmentation, etc.), the semantic distortion in compressed images are also an important dimension in the theoretical analysis of lossy image compression.
- Categories:
Feature selection has been explored in two ways, global feature selection and instance-wise feature selection. Global feature selection picks the same feature selector for the entire dataset, while instance-wise feature selection allows different feature selectors for different data instances. We propose group-wise feature selection, a new setting that sits between global and instance-wise feature selections.
- Categories:
- Read more about DEEP LEARNING BASED OFF-ANGLE IRIS RECOGNITION
- Log in to post comments
Even with trained operators and cooperative subjects, it is still possible to capture off-angle iris images. Considering the recent demands for stand-off iris biometric systems and the trend towards ”on-the-move-acquisition”, off-angle iris recognition became a hot topic within the biometrics community. In this work, CNNs trained with the triplet loss function are applied to extract features for iris recognition.
- Categories:
- Read more about Graph Convolutional Networks with Autoencoder-Based Compression and Multi-Layer Graph Learning
- Log in to post comments
The aim of this work is to propose a novel architecture and training strategy for graph convolutional networks (GCN). The proposed architecture, named as Autoencoder-Aided GCN (AA-GCN), compresses the convolutional features in an information-rich embedding at multiple hidden layers, exploiting the presence of autoencoders before the point-wise non-linearities. Then, we propose a novel end-to-end training procedure that learns different graph representations per each layer, jointly with the GCN weights and auto-encoder parameters.
- Categories:
- Read more about Graph Convolutional Networks with Autoencoder-Based Compression and Multi-Layer Graph Learning
- Log in to post comments
The aim of this work is to propose a novel architecture and training strategy for graph convolutional networks (GCN). The proposed architecture, named as Autoencoder-Aided GCN (AA-GCN), compresses the convolutional features in an information-rich embedding at multiple hidden layers, exploiting the presence of autoencoders before the point-wise non-linearities. Then, we propose a novel end-to-end training procedure that learns different graph representations per each layer, jointly with the GCN weights and auto-encoder parameters.
- Categories:
- Read more about SELF-SUPERVISED LEARNING METHOD USING MULTIPLE SAMPLING STRATEGIES FOR GENERAL-PURPOSE AUDIO REPRESENTATION
- Log in to post comments
We propose a self-supervised learning method using multiple sampling strategies to obtain general-purpose audio representation. Multiple sampling strategies are used in the proposed method to construct contrastive losses from different perspectives and learn representations based on them. In this study, in addition to the widely used clip-level sampling strategy, we introduce two new strategies, a frame-level strategy and a task-specific strategy.
- Categories: