Sorry, you need to enable JavaScript to visit this website.

We consider the problem of detecting whether a tensor signal having many missing entities lies within a given low dimensional Kronecker-Structured (KS) subspace. This is a matched subspace detection problem. Tensor matched subspace detection problem is more challenging because of the intertwined signal dimensions. We solve this problem by projecting the signal onto the KS subspace, which is a Kronecker product of different subspaces corresponding to each signal dimension. Under this framework, we define the KS subspaces and the orthogonal projection of the signal onto the KS subspace.


Neuromorphic vision sensing (NVS) hardware is now gaining traction as a low-power/high-speed visual sensing technology that circumvents the limitations of conventional active pixel sensing (APS) cameras. While object detection and tracking models have been investigated in conjunction with NVS, there is currently little work on NVS for higher-level semantic tasks, such as action recognition.


Feature selection and reducing the dimensionality of data is an essential step in data analysis. In this work, we propose a new criterion for feature selection that is formulated as conditional information between features given the labeled variable. Instead of using the standard mutual information measure based on Kullback-Leibler divergence, we use our proposed criterion to filter out redundant features for the purpose of multiclass classification.


In this paper, a region-based deep convolutional neural network
(R-DCNN) is proposed to detect and classify gestures
measured by a frequency-modulated continuous wave radar
system. Micro-Doppler (μD) signatures of gestures are exploited,
and the resulting spectrograms are fed into a neural
network. We are the first to use the R-DCNN for radar-based
gesture recognition, such that multiple gestures could be automatically
detected and classified without manually clipping
the data streams according to each hand movement in advance.


In this paper, we adapt Recurrent Neural Networks with Stochastic Layers, which are the state-of-the-art for generating text, music and speech, to the problem of acoustic novelty detection. By integrating uncertainty into the hidden states, this type of network is able to learn the distribution of complex sequences. Because the learned distribution can be calculated explicitly in terms of probability, we can evaluate how likely an observation is then detect low-probability events as novel.


We introduce a novel technique for the automatic detection of word boundaries within continuous sentence expressions in Japanese Sign Language from three-dimensional body joint positions. First, the flow of signed sentence data within a temporal neighborhood is determined utilizing the spatial correlations between line segments of inter-joint pairs. Next, a frame-wise binary random forest classifier is trained to distinguish word and non-word frame content based on the extracted spatio-temporal features.


Recent years have assisted a widespreading of Radio-Frequency-based tracking and mapping algorithms for a wide range of applications, ranging from environment surveillance to human-computer interface.


We present a novel event embedding algorithm for crime data that can jointly capture time, location, and the complex free-text component of each event. The embedding is achieved by regularized Restricted Boltzmann Machines (RBMs), and we introduce a new way to regularize by imposing a ℓ1 penalty on the conditional distributions of the observed variables of RBMs. This choice of regularization performs feature selection and it also leads to efficient computation since the gradient can be computed in a closed form.