- Read more about MULTIPLE INSTANCE DENSE CONNECTED CONVOLUTION NEURAL NETWORK FOR AERIAL IMAGE SCENE CLASSIFICATION
- Log in to post comments
With the development of deep learning, many state-of-the-art natural image scene classification methods have demonstrated impressive performance. While the current convolution neural network tends to extract global features and global semantic information in a scene, the geo-spatial objects can be located at anywhere in an aerial image scene and their spatial arrangement tends to be more complicated. One possible solution is to preserve more local semantic information and enhance feature propagation.
- Categories:
- Read more about Fast 6dof Pose Estimation with Synthetic Textureless Cad Model for Mobile Applications
- Log in to post comments
Performance of 6DoF pose estimation techniques from RGB/RGB-D images has improved significantly with sophisticated deep learning frameworks. These frameworks require large-scale training data based on real/synthetic RGB/RGB-D information. Difficulty of obtaining adequate training data has limited the scope of these frameworks for ubiquitous application areas. Also, fast pose estimation at inference time often requires high-end GPU(s) that restricts the scope for its application in mobile hardware.
- Categories:
Current face detection concentrates on detecting tiny faces and severely occluded faces. Face analysis methods, however, require a good localization and would benefit greatly from some rotation information. We propose to predict a face direction vector (FDV), which provides the face size and orientation and can be learned by a common object detection architecture better than the traditional bounding box. It provides a more consistent definition of face location and size. Using the FDV is promising for all succeeding face analysis methods.
- Categories:
- Read more about Unconstrained Flood Event Detection Using Adversarial Data Augmentation
- Log in to post comments
Nowadays, the world faces extreme climate changes, resulting in an increase of natural disaster events and their severities. In these conditions, the necessity of disaster information management systems has become more imperative. Specifically, in this paper, the problem of flood event detection from images with real-world conditions is addressed. That is, the images may be taken in several conditions, including day, night, blurry, clear, foggy, rainy, different lighting conditions, etc. All these abnormal scenarios significantly reduce the performance of the learning algorithms.
- Categories:
- Read more about Rotation-Invariant CNN using scattering transform for image classification
- Log in to post comments
ICIP_v1.pdf
- Categories:
- Read more about Generation of head models for brain stimulation using deep convolution networks
- Log in to post comments
Transcranial magnetic stimulation (TMS) is a non-invasive clinical technique used for treatment of several neurological diseases such as depression, Alzheimer’s disease and Parkinson’s disease. However, it is always challenging to accurately adjust the electric field on different specific brain regions due to the requirement of several stimulation parameters’ optimizations.
- Categories:
- Read more about Kernel Mean p Power Error Loss for Robust Two-Dimensional Singular Value Decomposition
- Log in to post comments
Traditional matrix-based dimensional reduction methods, e.g., two-dimensional principal component analysis (2DPCA) and two-dimensional singular value decomposition (2DSVD), minimize mean square errors (MSE), which is sensitive to outliers. To overcome this problem, in this paper we propose a new robust 2DSVD method based on the kernel mean $p$ power error loss (KMPE-2DSVD).
ICIP20192DSVD.pdf
- Categories:
- Read more about TRANSFER LEARNING OF Wi-Fi HANDWRITTEN SIGNATURE SIGNALS FOR IDENTITY VERIFICATION BASED ON THE KERNEL AND THE RANGE SPACE PROJECTION
- Log in to post comments
In this paper, we propose a system for identity verification based on the gesture signals of handwritten signature captured by the Wi-Fi CSI wave packets at different positions using transfer learning. Essentially, a ConvNet is first pretrained using the Wi-Fi signature signals collected from one position. Subsequently, the pretrained feature extractor is transferred to recognize signals collected from another position via a rapid retraining process. We utilize the kernel and the range space projection learning when we retrain the transferred model.
- Categories:
- Read more about INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION
- Log in to post comments
Conformal prediction uses the degree of strangeness (nonconformity) of new data instances to determine the confidence values of new predictions. We propose an inductive conformal predictor for sparse coding classifiers, referred to as ICP-SCC. Our contribution is twofold: first, we present two nonconformitymeasures that produce reliable confidence values; second, we propose a batchmode active learning algorithm within the conformal prediction framework to improve classification performance by selecting training instances based on two criteria, informativeness and diversity.
- Categories:
- Read more about TENSOR MATCHED KRONECKER-STRUCTURED SUBSPACE DETECTION FOR MISSING INFORMATION
- Log in to post comments
We consider the problem of detecting whether a tensor signal having many missing entities lies within a given low dimensional Kronecker-Structured (KS) subspace. This is a matched subspace detection problem. Tensor matched subspace detection problem is more challenging because of the intertwined signal dimensions. We solve this problem by projecting the signal onto the KS subspace, which is a Kronecker product of different subspaces corresponding to each signal dimension. Under this framework, we define the KS subspaces and the orthogonal projection of the signal onto the KS subspace.
- Categories: