Sorry, you need to enable JavaScript to visit this website.

Head movement is an integral part of face-to-face communications. It is important to investigate methodologies to generate naturalistic movements for conversational agents (CAs). The predominant method for head movement generation is using rules based on the meaning of the message. However, the variations of head movements by these methods are bounded by the predefined dictionary of gestures. Speech-driven methods offer an alternative approach, learning the relationship between speech and head movements from real recordings.

Categories:
35 Views

Memorability of media content such as images and videos has recently become an important research subject in computer vision. This paper presents our computation model for predicting image memorability, which is based on a deep learning architecture designed for a classification task. We exploit the use of both convolutional neural network (CNN) - based visual features and semantic features related to image captioning for the task. We train and test our model on the large-scale benchmarking memorability dataset: LaMem.

Categories:
122 Views

Researchers have recently examined a modified approach to sparse coding that encourages dictionaries to learn anomalous features. This is done by incorporating the matrix 1-norm, or \ell_{1,\infty} mixed matrix norm, into the dictionary update portion of a sparse coding algorithm. However, solving a matrix norm minimization problem in each iteration of the algorithm

Categories:
34 Views

Deep Neural Network (DNN) is a basic method used for the rare Acoustic Event Detection (AED) in synthesised audio. The structure of DNNs including Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN) for AED tasks has rather fewer hidden layers compared with computer vision systems. This paper tries to demonstrate that a DNN with more hidden layers does not necessarily guarantee a better performance in AED tasks.

Categories:
125 Views

Motivated by applications such as ordinal embedding and collaborative ranking, we formulate homogeneous quadratic feasibility as an unconstrained, non-convex minimization problem. Our work aims to understand the landscape (local minimizers and global minimizers) of the non-convex objective, which corresponds to hinge losses arising from quadratic constraints. Under certain assumptions, we give necessary conditions for non-global, local minimizers of our objective and additionally show that in two dimensions, every local minimizer is a global minimizer.

Categories:
125 Views

erformance of object classification using 3D automotive radar relies on accurate data association and multitarget tracking, which are greatly affected by data bias and proximity of objects to each other. A regularized fuzzy c-means (RFCM) algorithm is proposed herein to resolve the data association uncertainty problem that has shown to outperform the conventional FCM algorithm. The proposed method exploits results from the companion tracker to increase performance robustness. Simulation results using simulated and field data have proven the efficacy of the proposed method.

Categories:
30 Views

Dynamic functional connectivity has become a prominent approach for tracking the changes of macroscale statistical dependencies between regions in the brain. Effective parametrization of these statistical dependencies, referred to as brain states, is however still an open problem. We investigate different emission models in the hidden Markov model framework, each representing certain assumptions about dynamic changes in the brain.

Categories:
4 Views

In this paper, we propose a deep learning based algorithm to estimate the position of an user by utilizing reference signal received power (RSRP) and the location of base stations. To obtain reliable results in a real communication environment, parameters were measured using commercially available base stations and mobile phones within a LTE network. Since the structure of the measured data changes in accordance with the number of connected base stations, it is necessary to work on data uniformity processing before running the deep learning network.

Categories:
84 Views

Traditional NMF-based signal decomposition relies on the factorization of spectral data, which is typically computed by means of short-time frequency transform. In this paper we propose to relax the choice of a pre-fixed transform and learn a short-time orthogonal transform together with the factorization. To this end, we formulate a regularized optimization problem reminiscent of conventional NMF, yet with the transform as additional unknown parameters, and design a novel block-descent algorithm enabling to find stationary points of this objective function.

Categories:
4 Views

We present a new method to generate fake data in unknown classes in generative adversarial networks (GANs) framework. The generator in GANs is trained to generate somewhat similar to data in known classes but the different one by modelling noisy distribution on feature space of a classifier using proposed marginal denoising autoencoder. The generated data are treated as fake instances in unknown classes and given to the classifier to make it be robust to the real unknown classes.

Categories:
77 Views

Pages