Sorry, you need to enable JavaScript to visit this website.

Dynamic functional connectivity has become a prominent approach for tracking the changes of macroscale statistical dependencies between regions in the brain. Effective parametrization of these statistical dependencies, referred to as brain states, is however still an open problem. We investigate different emission models in the hidden Markov model framework, each representing certain assumptions about dynamic changes in the brain.

Categories:
4 Views

In this paper, we propose a deep learning based algorithm to estimate the position of an user by utilizing reference signal received power (RSRP) and the location of base stations. To obtain reliable results in a real communication environment, parameters were measured using commercially available base stations and mobile phones within a LTE network. Since the structure of the measured data changes in accordance with the number of connected base stations, it is necessary to work on data uniformity processing before running the deep learning network.

Categories:
86 Views

Traditional NMF-based signal decomposition relies on the factorization of spectral data, which is typically computed by means of short-time frequency transform. In this paper we propose to relax the choice of a pre-fixed transform and learn a short-time orthogonal transform together with the factorization. To this end, we formulate a regularized optimization problem reminiscent of conventional NMF, yet with the transform as additional unknown parameters, and design a novel block-descent algorithm enabling to find stationary points of this objective function.

Categories:
4 Views

We present a new method to generate fake data in unknown classes in generative adversarial networks (GANs) framework. The generator in GANs is trained to generate somewhat similar to data in known classes but the different one by modelling noisy distribution on feature space of a classifier using proposed marginal denoising autoencoder. The generated data are treated as fake instances in unknown classes and given to the classifier to make it be robust to the real unknown classes.

Categories:
79 Views

Speech emotion recognition is important to understand users' intention in human-computer interaction. However, it is a challenging task partly because we cannot clearly know which feature and model are effective to distinguish emotions. Previous studies utilize convolutional neural network (CNN) directly on spectrograms to extract features, and bidirectional long short term memory (BLSTM) is the state-of-the-art model. However, there are two problems of CNN-BLSTM. Firstly, it doesn't utilize heuristic features based on priori knowledge.

Categories:
202 Views

We propose a benchmark curve that measures the inherent complexity of a detection problem. The benchmark curve is built using a sequence of simple detection methods based upon random projection. It is parameterized by the area above the receiver-operating characteristic curve of the detection method and its computational cost. It divides the plane into regions that can be used to characterize the computational and structural advantages of a given detection method. Numerical illustrations are provided.

Categories:
4 Views

We introduce deep transform learning – a new
tool for deep learning. Deeper representation is learnt by
stacking one transform after another. The learning proceeds in
a greedy way. The first layer learns the transform and features
from the input training samples. Subsequent layers use the
features (after activation) from the previous layers as training
input. Experiments have been carried out with other deep
representation learning tools – deep dictionary learning,
stacked denoising autoencoder, deep belief network and PCANet

Categories:
72 Views

This paper presents preliminary results for motion behavior analysis of Madagascar hissing cockroach biobots subject to stochastic and periodic neurostimulation pulses corresponding to randomly applied right and left turn, and move forward commands. We present our experimental setup and propose an unguided search strategy based stimulation profile designed for exploration of unknown environments. We study a probabilistic motion model fitted to the trajectories of biobots, perturbed from their natural motion by the stimulation pulses.

Categories:
26 Views

Pages