Sorry, you need to enable JavaScript to visit this website.

In big data applications, classical ensemble learning is typically infeasible on the raw input data and dimensionality reduction techniques are necessary. To this end, novel framework that generalises classic flat-view ensemble learning to multidimensional tensor- valued data is introduced. This is achieved by virtue of tensor decompositions, whereby the proposed method, referred to as tensor ensemble learning (TEL), decomposes every input data sample into multiple factors which allows for a flexibility in the choice of multiple learning algorithms in order to improve test performance.

Categories:
19 Views

Machine learning is a rapidly growing field that has been expanding into various aspects of technology and science in recent years. Unfortunately, it has been shown recently that machine learning models are highly vulnerable to well-crafted adversarial attacks. This paper develops a novel method for maliciously inserting a backdoor into a well-trained neural network causing misclassification that is only active under rare input keys.

Categories:
194 Views

We address the problem of camera motion estimation from a single blurred image with the aid of deep convolutional neural networks.
Unlike learning-based prior works that estimate a space-invariant blur kernel, we solve for the global camera motion which in turn

Categories:
16 Views

In this work, we study the optimal trajectory of an unmanned aerial vehicle (UAV) acting as a base station (BS) to serve multiple users. Considering multiple flying epochs, we leverage the tools of reinforcement learning (RL) with the UAV acting as an autonomous agent in the environment to learn the trajectory that maximizes the sum rate of the transmission during flying time. By applying Q-learning, a model-free RL technique, an agent is trained to make movement decisions for the UAV. We compare table-based and neural network (NN) approximations of the Q-function and analyze the results.

Categories:
16 Views

We examine the usability of deep neural networks for multiple-input multiple-output (MIMO) user positioning solely based on the orthogonal frequency division multiplex (OFDM) complex channel coefficients. In contrast to other indoor positioning systems (IPSs), the proposed method does not require any additional piloting overhead or any other changes in the communications system itself as it is deployed on top of an existing OFDM MIMO system. Supported by actual measurements, we are mainly interested in the more challenging non-line of sight (NLoS) scenario.

Categories:
70 Views

Full-duplex systems require very strong self-interference cancellation in order to operate correctly and a significant part of the self-interference signal is due to non-linear effects created by various transceiver impairments. As such, linear cancellation alone is usually not sufficient and sophisticated non-linear cancellation algorithms have been proposed in the literature. In this work, we investigate the use of a neural network as an alternative to the traditional non-linear cancellation method that is based on polynomial basis functions.

Categories:
44 Views

Gaussian mixture model (GMM) is a powerful probabilistic model for representing the probability distribution of observations in the population. However, the fitness of Gaussian mixture model can be significantly degraded when the data contain a certain amount of outliers. Although there are certain variants of GMM (e.g., mixture of Laplace, mixture of t distribution) attempting to handle outliers, none of them can sufficiently mitigate the effect of outliers if the outliers are far from the centroids.

Categories:
36 Views

Pages