Sorry, you need to enable JavaScript to visit this website.

Time-based sampling of continuous-time signals is an alternate sampling paradigm in which the signal is encoded using a sequence of non-uniform instants time. The standard methods for reconstructing bandlimited and shift-invariant signals from their time-encoded measurements employ alternating projections type methods. In this paper, we consider the problem of sampling and perfect reconstruction of periodic finite-rate-of-innovation (FRI) signals using crossing time-encoding machine (C-TEM) and integrate-and-fire TEM (IF-TEM).

Categories:
7 Views

A Turing machine is a model describing the fundamental limits of any realizable computer, digital signal processor (DSP), or field programmable gate array (FPGA). This paper shows that there exist very simple linear time-invariant (LTI) systems which can not be simulated on a Turing machine. In particular, this paper considers the linear system described by the voltage-current relation of an ideal capacitor. For this system, it is shown that there exist continuously differentiable and computable input signals such that the output signal is a continuous function which is not computable.

Categories:
3 Views

Sub-Nyquist radars require fewer measurements, facilitating low-cost design, flexible resource allocation, etc. By applying compressed sensing (CS) method, such radars achieve close performance to traditional Nyquist radars. However in low signal-to-noise ratio (SNR) scenarios, detecting weak targets is challenging: low probability of detection and many spurious targets could occur in the recovery results of traditional CS method.

Categories:
9 Views

Multi-channel sparse blind deconvolution refers to the problem of learning an unknown filter by observing its circulant convolutions with multiple input signals that are sparse. It is challenging to learn the filter efficiently due to the bilinear structure of the observations with respect to the unknown filter and inputs, leading to global ambiguities of identification. We propose a novel approach based on nonconvex optimization over the sphere manifold by minimizing a smooth surrogate of the sparsity-promoting loss function.

Categories:
8 Views

Trellis quantization as structured vector quantizer is able to improve
the rate-distortion performance of traditional scalar quantizers. As such,
it has found its way into the JPEG~2000 standard, and also recently as an
option in HEVC. In this paper, a trellis quantization option for JPEG XS is
considered and analyzed; JPEG~XS is a low-complexity, low-latency high-speed
"mezzanine" codec for Video over IP transmission in professional
production environments and industrial applications where high compression

Categories:
37 Views

Generative models have recently received considerable attention in the field of compressive sensing. If an image belongs to the range of a pretrained generative network, we can recover it from its compressive measurements by estimating the underlying compact latent code. In practice, all the pretrained generators have certain range beyond which they fail to generate reliably. Recent researches show that convolutional generative structures are biased to generate natural images.

Categories:
29 Views

The design of sampling set (DoS) for bandlimited graph signals (GS) has been extensively studied in recent years, but few of them

Categories:
18 Views

Pages