Sorry, you need to enable JavaScript to visit this website.

The automatic discovery of acoustic sub-word units from raw speech, without any text or labels, is a growing field of research. The key challenge is to derive representations of speech that can be categorized into a small number of phoneme-like units which are speaker invariant and can broadly capture the content variability of speech. In this work, we propose a novel neural network paradigm that uses the deep clustering loss along with the autoregressive con- trastive predictive coding (CPC) loss. Both the loss functions, the CPC and the clustering loss, are self-supervised.


Capitalization normalization (truecasing) is the task of restoring the correct case (uppercase or lowercase) of noisy text. We propose a fast, accurate and compact two-level hierarchical word-and-character-based recurrent neural network model. We use the truecaser to normalize user-generated text in a Federated Learning framework for language modeling. A case-aware language model trained on this normalized text achieves the same perplexity as a model trained on text with gold capitalization.


Language models (LM) have been widely deployed in modern ASR systems. The LM is often trained by minimizing its perplexity on speech transcript. However, few studies try to discriminate a "gold" reference against inferior hypotheses. In this work, we propose a large margin language model (LMLM). LMLM is a general framework that enforces an LM to assign a higher score to the "gold" reference, and a lower one to the inferior hypothesis. The general framework is applied to three pretrained LM architectures: left-to-right LSTM, transformer encoder, and transformer decoder.


Neural network language model (NNLM) is an essential component of industrial ASR systems. One important challenge of training an NNLM is to leverage between scaling the learning process and handling big data. Conventional approaches such as block momentum provides a blockwise model update filtering (BMUF) process and achieves almost linear speedups with no performance degradation for speech recognition.


Building multilingual and crosslingual models help bring different languages together in a language universal space. It allows models to share parameters and transfer knowledge across languages, enabling faster and better adaptation to a new language. These approaches are particularly useful for low resource languages. In this paper, we propose a phoneme-level language model that can be used multilingually and for crosslingual adaptation to a target language.