Sorry, you need to enable JavaScript to visit this website.

Phase retrieval refers to recovery of a signal-of-interest given only the intensity measurement samples and has wide applicability including important areas of astronomy, computational biology, crystallography, digital communications, electron microscopy, neutron radiography and optical imaging. The classical problem formulation is to restore the time-domain signal from its power spectrum observations, although the Fourier transform can be generalized to any linear mappings.

Categories:
101 Views

Matrix completion aims to find the missing entries from incomplete observations using the low-rank property. Conventional convex optimization based techniques minimize the nuclear norm subject to a constraint on the Frobenius norm of the residual. However, they are not robust to outliers and have a high computational complexity. Different from the existing schemes based on solving a minimization problem, we formulate matrix completion as a feasibility problem.

Categories:
349 Views

Structured sparse representation has been recently found to achieve better efficiency and robustness in exploiting the target appearance model in tracking systems with both holistic and local information. Therefore, to better simultaneously discriminate multi-targets from their background, we propose a novel video-based multi-target tracking system that combines the particle probability hypothesis density (PHD) filter with discriminative group-structured dictionary learning.

Categories:
3 Views

We investigate an M-channel critically sampled filter bank for graph signals where each of the M filters is supported on a different subband of the graph Laplacian spectrum. We partition the graph vertices such that the mth set comprises a uniqueness set for signals supported on the mth subband. For analysis, the graph signal is filtered on each subband and downsampled on the corresponding set of vertices.

Categories:
27 Views

Historically, sparse methods and neural networks, particularly modern deep learning methods, have been relatively disparate areas. Sparse methods are typically used for signal enhancement, compression,and recovery, usually in an unsupervised framework, while neural networks commonly rely on a supervised training set.

Categories:
125 Views

The success of Empirical Mode Decomposition (EMD) resides in its practical approach to dissect non-stationary data. EMD repetitively goes through the entire data span to iteratively extract Intrinsic Mode Functions (IMFs). This approach, however, is not suitable for data stream as the entire data set has to be reconsidered every time a new point is added. To overcome this, we propose Online EMD, an algorithm that extracts IMFs on the fly.

Categories:
61 Views

Graph Signal Processing generalizes classical signal processing to signal or data indexed by the vertices of a weighted graph. So far, the research efforts have been focused on static graph signals. However numerous applications involve graph signals evolving in time, such as spreading or propagation of waves on a network. The analysis of this type of data requires a new set of methods that takes into account the time and graph dimensions. We propose a novel class of wavelet frames named Dynamic Graph Wavelets, whose time-vertex evolution follows a dynamic process.

Categories:
5 Views

Pages