- Signal and System Modeling, Representation and Estimation
- Multirate Signal Processing
- Sampling and Reconstruction
- Nonlinear Systems and Signal Processing
- Filter Design
- Adaptive Signal Processing
- Statistical Signal Processing

- Read more about Analysis vs Synthesis - An Investigation of (Co)sparse Signal Models on Graphs
- Log in to post comments
- Categories:

- Read more about Analysis vs Synthesis - An Investigation of (Co)sparse Signal Models on Graphs
- Log in to post comments
- Categories:

- Read more about PREDICTION-BASED SIMILARITY IDENTIFICATION FOR AUTOREGRESSIVE PROCESSES
- Log in to post comments
- Categories:

- Read more about Generalized Approximate Message Passing for Unlimited Sampling of Sparse Signals
- Log in to post comments
In this paper we consider the generalized approxi- mate message passing (GAMP) algorithm for recovering a sparse signal from modulo samples of randomized projections of the unknown signal. The modulo samples are obtained by a self-reset (SR) analog to digital converter (ADC). Additionally, in contrast to previous work on SR ADC, we consider a scenario where the compressed sensing (CS) measurements (i.e., randomized projections) are sent through a communication channel, namely an additive white Gaussian noise (AWGN) channel before being quantized by a SR ADC.
- Categories:


- Read more about Generation of Correlated PSK Waveforms Using Complex Gaussian Random Variables
- Log in to post comments
This work proposes a direct method to generate phase shift keying (PSK) symbols with desired correlation properties by mapping complex Gaussian random variables. The relationship between the cross-correlation of Gaussian and PSK symbols is derived in closed-form. This non-iterative approach outputs finite-alphabet constant-modulus waveforms capable of matching desired transmit beampatterns.
Poster.pdf

- Categories:

- Read more about LARGE SCALE RANDOMIZED LEARNING GUIDED BY PHYSICAL LAWS WITH APPLICATIONS IN FULL WAVEFORM INVERSION
- Log in to post comments
The rapid convergence rate, high fidelity learning outcome and low computational cost are key targets in solving the learning problem of the complex physical system. Guided
- Categories:

- Read more about Designing Constrained Projections for Compressed Sensing: Mean Errors and Anomalies with Coherence
- Log in to post comments
Most existing work in designing sensing matrices for compressive recovery is based on optimizing some quality factor, such as mutual coherence, average coherence or the restricted isometry constant (RIC), of the sensing matrix. In this paper, we report anomalous results that show that such a design is not always guaranteed to improve reconstruction results.
- Categories:

- Read more about A Multicore Convex Optimization Algorithm with Applications to Video Restoration
- Log in to post comments
In this paper, we present a new distributed algorithm for minimizing a sum of non-necessarily differentiable convex
functions composed with arbitrary linear operators. The overall cost function is assumed strongly convex.
- Categories:

- Read more about SAVE - Space Alternating Variational Estimation for Sparse Bayesian Learning
- Log in to post comments
- Categories: