Sorry, you need to enable JavaScript to visit this website.

We consider an oligopoly dynamic pricing problem where the demand model is unknown and the sellers have different marginal costs. We formulate the problem as a repeated game with incomplete information. We develop a dynamic pricing strategy that leads to a Pareto-efficient and subgame-perfect equilibrium and offers a bounded regret over an infinite horizon, where regret is defined as the expected cumulative profit loss as compared to the ideal scenario with a known demand model.


This paper focuses on the problem of distributed composite
hypothesis testing in a network of sparsely interconnected
agents, in which only a small section of the field modeling
parametric alternatives is observable at each agent. A recursive
generalized likelihood ratio test (GLRT) type algorithm
in a distributed setup of the consensus-plus-innovations form
is proposed, in which the agents update their parameter estimates
and decision statistics by simultaneously processing
the latest sensed information (innovations) and information


Time delay estimation refers to finding the time-differences-of-arrival between signals received at an array of sensors. In this presentation, representative applications of time delay estimation are first described. Algorithms for accurately estimating the time difference between two sensor outputs using random and deterministic signals are then presented and analyzed.