Sorry, you need to enable JavaScript to visit this website.

The success of Empirical Mode Decomposition (EMD) resides in its practical approach to dissect non-stationary data. EMD repetitively goes through the entire data span to iteratively extract Intrinsic Mode Functions (IMFs). This approach, however, is not suitable for data stream as the entire data set has to be reconsidered every time a new point is added. To overcome this, we propose Online EMD, an algorithm that extracts IMFs on the fly.

Categories:
82 Views

Graph Signal Processing generalizes classical signal processing to signal or data indexed by the vertices of a weighted graph. So far, the research efforts have been focused on static graph signals. However numerous applications involve graph signals evolving in time, such as spreading or propagation of waves on a network. The analysis of this type of data requires a new set of methods that takes into account the time and graph dimensions. We propose a novel class of wavelet frames named Dynamic Graph Wavelets, whose time-vertex evolution follows a dynamic process.

Categories:
9 Views

Sampling and reconstruction of bandlimited graph signals have well-appreciated merits for dimensionality reduction, affordable storage, and online processing of streaming network data. However, these parsimonious signals are oftentimes encountered with high-dimensional linear inverse problems. Hence, interest shifts from reconstructing the signal itself towards instead approximating the input to a prescribed linear operator efficiently.

Categories:
9 Views

This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations.

Categories:
105 Views

Electric Network Frequency is the frequency of power distribution networks in power grids that fluctuates about a nominal value with respect to the changing loads.Its ubiquitous nature has made notable contributions to forensic analysis that has substantiated its use as a significant tool in this area. In this paper we have proposed a technique to identify the power grid in which the ENF containing signal was recorded, without the assistance of concurrent power references.

Categories:
113 Views

Testing complex digital signal processors (DSPs) requires a development platform with sufficient
signal bandwidth and system performance to fully exercise the DSP. Without a development plat-
form, verification of DSPs would be limited to monitoring test output signals for an indication of
performance and successful operation. In addition, a development platform with high-speed analog
input and output interfaces to the DSP system allows it to be used directly in many sophisticated

Categories:
7 Views

Pages