Sorry, you need to enable JavaScript to visit this website.

Many information sources are not just sequences of distinguishable symbols but rather have invariances governed by alternative counting paradigms such as permutations, combinations, and partitions. We consider an entire classification of these invariances called the twelvefold way in enumerative combinatorics and develop a method to characterize lossless compression limits. Explicit computations for all twelve settings are carried out for i.i.d. uniform and Bernoulli distributions. Comparisons among settings provide quantitative insight.

Categories:
42 Views

Multiple-object tracking (MOT) and classification are core technologies for processing moving point clouds in radar or lidar applications. For accurate object classification, the one-to-one association relationship between the model of each objects' motion (trackers) and the observation sequences including auxiliary features (e.g., radar cross section) is important.

Categories:
56 Views

Multiple-object tracking (MOT) and classification are core technologies for processing moving point clouds in radar or lidar applications. For accurate object classification, the one-to-one association relationship between the model of each objects' motion (trackers) and the observation sequences including auxiliary features (e.g., radar cross section) is important.

Categories:
32 Views

Economic and financial decision-making may cause a significant impact on government, society, and industries. Due to the increasing volume of data, decision science has become an interdisciplinary field of study, supported by efficient methods and models of data analysis. Our contributions lie exactly in the intersection of signal processing, tensorial algebra, and decision science. More precisely, we introduce a novel approach in which the data taken into account in the decision process is modeled as a tensor.

Categories:
13 Views

Pages