Sorry, you need to enable JavaScript to visit this website.

The recently reported Wirtinger flow (WF) algorithm has been demonstrated as a promising method for solving the problem of phase retrieval by applying a gradient descent scheme. An empirical choice of stepsize is suggested in practice. However, this heuristic stepsize selection rule is not optimal. In order to accelerate the convergence rate, we propose an improved WF with optimal stepsize. It is revealed that this optimal stepsize is the solution of a univariate cubic equation with real-valued coefficients.

Categories:
12 Views

Multilayer graphs are commonly used for representing different relations between entities and handling heterogeneous data processing tasks. New challenges arise in multilayer graph clustering for assigning clusters to a common multilayer node set and for combining information from each layer. This paper presents a theoretical framework for multilayer spectral graph clustering of the nodes via convex layer aggregation.

Categories:
4 Views

In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors.

Categories:
Views

In this work, we use Pitman’s efficiency to characterize the diversity of a spatio-temporal distributed detection system. Pitman’s efficiency directly measures the detection ability of the data at low signal to noise ratios (SNRs). We study how the

Categories:
2 Views

In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors.

Categories:
Views

Pages