Sorry, you need to enable JavaScript to visit this website.

In this work, we use Pitman’s efficiency to characterize the diversity of a spatio-temporal distributed detection system. Pitman’s efficiency directly measures the detection ability of the data at low signal to noise ratios (SNRs). We study how the

Categories:
2 Views

In this paper, we address the problem of robust adaptive beamforming of signals received by a linear array. The challenge associated with the beamforming problem is twofold. Firstly, the process requires the inversion of the usually ill-conditioned covariance matrix of the received signals. Secondly, the steering vector pertaining to the direction of arrival of the signal of interest is not known precisely. To tackle these two challenges, the standard capon beamformer is manipulated to a form where the beamformer output is obtained as a scaled version of the inner product of two vectors.

Categories:
1 Views

Automatic Modulation Classification (AMC) has received a major attention last decades, as a required step between signal detection and demodulation. In the fully-blind scenario, this task turns out to be quite challenging, especially when the computational complexity and the robustness to uncertainty matter. AMC commonly relies on a preprocessor whose function is to estimate unknown parameters, filter the received signal and sample it in a suitable way. Any preprocessing error inherently leads to a performance loss.

Categories:
23 Views

The purpose of this note is to provide an effective means to compute the Cramér-Rao lower bound numerically for deterministic parameter estimation problems with the use of symbolic computation in MATLAB.

Categories:
1470 Views

We consider the problem of estimating discrete self- exciting point process models from limited binary observations, where the history of the process serves as the covariate. We analyze the performance of two classes of estimators: l1-regularized maximum likelihood and greedy estimation for a discrete version of the Hawkes process and characterize the sampling tradeoffs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear and generalized linear models with i.i.d.

Categories:
10 Views

This work is a part of our research on scalable and/or distributed fusion and sensor calibration. We address parameter estimation in multi-sensor state space models which underpins surveillance applications with sensor networks. The parameter likelihood of the problem involves centralised Bayesian filtering of multi-sensor data, which lacks scalability with the number of sensors and induces a large communication load. We propose separable likelihoods which approximate the centralised likelihood with single sensor filtering terms.

Categories:
4 Views

Pages