ICASSP is the world’s largest and most comprehensive technical conference focused on signal processing and its applications. The 2019 conference will feature world-class presentations by internationally renowned speakers, cutting-edge session topics and provide a fantastic opportunity to network with like-minded professionals from around the world. Visit website.
For many music analysis problems, we need to know the presence
of instruments for each time frame in a multi-instrument
musical piece. However, such a frame-level instrument recognition
task remains difficult, mainly due to the lack of labeled
datasets. To address this issue, we present in this paper a
large-scale dataset that contains synthetic polyphonic music
with frame-level pitch and instrument labels. Moreover, we
propose a simple yet novel network architecture to jointly predict
- Categories:
- Categories:
- Read more about DISTRIBUTED TRACKING OF MANEUVERING TARGET: A FINITE-TIME ALGORITHM
- Log in to post comments
- Categories:
Deep convolutional neural networks (CNNs) are nowadays achieving significant leaps in different pattern recognition tasks including action recognition. Current CNNs are increasingly deeper, data-hungrier and this makes their success tributary of the abundance of labeled training data. CNNs also rely on max/average pooling which reduces dimensionality of output layers and hence attenuates their sensitivity to the availability of labeled data.
- Categories:
- Categories:
- Categories:
In this paper, we introduce a variation of a state-of-the-art real-time tracker (CFNet), which adds to the original algorithm robustness to target loss without a significant computational overhead. The new method is based on the assumption that the feature map can be used to estimate the tracking confidence more accurately.
- Categories: