Sorry, you need to enable JavaScript to visit this website.

A common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result in a significant amount of false mispronunciation alarms.

Categories:
1 Views

A common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result in a significant amount of false mispronunciation alarms.

Categories:
1 Views

The general approaches for polarity analysis in dialogue, e.g. Multiple Instance Learning (MIL), have achieved significant progress.
However, one significant drawback of current approaches is that the contribution of an utterance towards the polarity being a \emph{black-box}.
For existing methods, the polarity contained in each utterance, which we call meta-polarity, is not explicitly utilized.
In this paper, we study the problem of adding interpretability to the overall polarity by predicting the meta-polarity at the same time.

Categories:
6 Views

Accents mismatching is a critical problem for end-to-end ASR. This paper aims to address this problem by building an accent-robust RNN-T system with domain adversarial training (DAT). We unveil the magic behind DAT and provide, for the first time, a theoretical guarantee that DAT learns accent-invariant representations. We also prove that performing the gradient reversal in DAT is equivalent to minimizing the Jensen-Shannon divergence between domain output distributions.

Categories:
5 Views

The paper presents a Multi-Head Attention deep learning network for Speech Emotion Recognition (SER) using Log mel-Filter Bank Energies (LFBE) spectral features as the input. The multi-head attention along with the position embedding jointly attends to information from different representations of the same LFBE input sequence. The position embedding helps in attending to the dominant emotion features by identifying positions of the features in the sequence. In addition to Multi-Head Attention and position embedding, we apply multi-task learning with gender recognition as an auxiliary task.

Categories:
101 Views

Pages