Sorry, you need to enable JavaScript to visit this website.

Medical image analysis

Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform


Diagnosis of melanoma is fraught with uncertainty, and discordance rates among physicians remain high because of the lack of a definitive criterion. Motivated by this challenge, this paper first introduces the Patch Weyl transform (PWT), a 2-dimensional variant of the Weyl transform. It then presents a method for classifying pump-probe images of melanocytic lesions based on the PWT coefficients.

Paper Details

Authors:
Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank
Submitted On:
12 April 2018 - 11:47am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP Presentations.pdf

(86)

Subscribe

[1] Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank, "Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/2406. Accessed: Sep. 20, 2020.
@article{2406-18,
url = {http://sigport.org/2406},
author = {Qiang Qiu; Edward Bosch; Andrew Thompson; Francisco E. Robles; Guillermo Sapiro; Warren S. Warren; Robert Calderbank },
publisher = {IEEE SigPort},
title = {Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform},
year = {2018} }
TY - EJOUR
T1 - Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform
AU - Qiang Qiu; Edward Bosch; Andrew Thompson; Francisco E. Robles; Guillermo Sapiro; Warren S. Warren; Robert Calderbank
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/2406
ER -
Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank. (2018). Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform. IEEE SigPort. http://sigport.org/2406
Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank, 2018. Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform. Available at: http://sigport.org/2406.
Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank. (2018). "Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform." Web.
1. Qiang Qiu, Edward Bosch, Andrew Thompson, Francisco E. Robles, Guillermo Sapiro, Warren S. Warren, Robert Calderbank. Classifying Pump-probe Images of Melanocytic Lesions using the Weyl Transform [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/2406

REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK


Cone-beam computed tomography (CBCT) images often have some ring artifacts because of the inconsistent response of detector pixels. Removing ring artifacts in CBCT images without impairing the image quality is critical for the application of CBCT. In this paper, we explore this issue as an “adversarial problem” and propose a novel method to eliminate ring artifacts from CBCT images by using an imageto-image network based on Generative Adversarial Network (GAN).

Paper Details

Authors:
Shuyang Zhao,Jianwu Li, Qirun Huo
Submitted On:
12 April 2018 - 11:27am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP2018-2121-Poster

(301)

Subscribe

[1] Shuyang Zhao,Jianwu Li, Qirun Huo, "REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/2386. Accessed: Sep. 20, 2020.
@article{2386-18,
url = {http://sigport.org/2386},
author = {Shuyang Zhao;Jianwu Li; Qirun Huo },
publisher = {IEEE SigPort},
title = {REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK},
year = {2018} }
TY - EJOUR
T1 - REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK
AU - Shuyang Zhao;Jianwu Li; Qirun Huo
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/2386
ER -
Shuyang Zhao,Jianwu Li, Qirun Huo. (2018). REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK. IEEE SigPort. http://sigport.org/2386
Shuyang Zhao,Jianwu Li, Qirun Huo, 2018. REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK. Available at: http://sigport.org/2386.
Shuyang Zhao,Jianwu Li, Qirun Huo. (2018). "REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK." Web.
1. Shuyang Zhao,Jianwu Li, Qirun Huo. REMOVING RING ARTIFACTS IN CBCT IMAGES VIA GENERATIVE ADVERSARIAL NETWORK [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/2386

Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation


Quantitative scratch assay is significant in cell motility study for tissue repair, evolution of disease, drug treatment, and cancer metastasis. To overcome challenges in traditional manual operations in scratch assay, computational scratch assay is introduced, where image processing algorithms are exploited for cell motility quantification. In this new research realm, dedicated analysis tools are under-developed, which provides many opportunities for researchers expert on signal processing.

Paper Details

Authors:
Xingyu Li, K.N. Plataniotis
Submitted On:
12 November 2017 - 10:14pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Presentation_GLOBALSIP2017.pdf

(248)

Subscribe

[1] Xingyu Li, K.N. Plataniotis, "Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2327. Accessed: Sep. 20, 2020.
@article{2327-17,
url = {http://sigport.org/2327},
author = {Xingyu Li; K.N. Plataniotis },
publisher = {IEEE SigPort},
title = {Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation},
year = {2017} }
TY - EJOUR
T1 - Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation
AU - Xingyu Li; K.N. Plataniotis
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2327
ER -
Xingyu Li, K.N. Plataniotis. (2017). Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation. IEEE SigPort. http://sigport.org/2327
Xingyu Li, K.N. Plataniotis, 2017. Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation. Available at: http://sigport.org/2327.
Xingyu Li, K.N. Plataniotis. (2017). "Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation." Web.
1. Xingyu Li, K.N. Plataniotis. Computational Scratch Assay - A New Frontier for Image Analysis: Preliminary Study of Multi-Cellular Segmentation [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2327

SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION


Gaining information about heart and coronary arteries such as estimating the flow velocity and coronary flow reserve (CFR) by only using 2D + time X-ray angiography sequence is of great interest due to its availability. We propose to segment the coronary arteries from 2D+time X-ray angiography sequences during contrast fluid propagation, by using a multi-step method based on unsharp masking followed by an iterative process of segmenting and non-rigid registration, until the alignment from the registration process is satisfactory.

Paper Details

Authors:
Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen
Submitted On:
20 November 2017 - 6:05am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Abstract.pdf

(237)

GlobalSIP2017.pdf

(211)

Subscribe

[1] Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen, "SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2286. Accessed: Sep. 20, 2020.
@article{2286-17,
url = {http://sigport.org/2286},
author = {Kjersti Engan; Trygve Eftestøl; Charlotte Sæland; Alf Inge Larsen },
publisher = {IEEE SigPort},
title = {SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION},
year = {2017} }
TY - EJOUR
T1 - SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION
AU - Kjersti Engan; Trygve Eftestøl; Charlotte Sæland; Alf Inge Larsen
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2286
ER -
Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen. (2017). SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION. IEEE SigPort. http://sigport.org/2286
Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen, 2017. SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION. Available at: http://sigport.org/2286.
Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen. (2017). "SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION." Web.
1. Kjersti Engan, Trygve Eftestøl, Charlotte Sæland, Alf Inge Larsen. SEGMENTATION OF CORONARY ARTERIES FROM X-RAY ANGIOGRAPHY SEQUENCES DURING CONTRAST FLUID PROPAGATION BY IMAGE REGISTRATION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2286

A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle


Left ventricle (LV) segmentation is crucial for quantitative analysis of the cardiac contractile function. In this paper, we propose a joint multi-scale convolutional neural network to fully automatically segment the LV. Our method adopts two kinds of multi-scale features of cardiac magnetic resonance (CMR) images, including multi-scale features directly extracted from CMR images with different scales and multi-scale features constructed by intermediate layers of standard CNN architecture.

Paper Details

Authors:
Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning
Submitted On:
21 September 2017 - 2:05am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017-3473-poster.pdf

(259)

Subscribe

[1] Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning, "A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2242. Accessed: Sep. 20, 2020.
@article{2242-17,
url = {http://sigport.org/2242},
author = {Qianqian Tong; Zhiyong Yuan; Xiangyun Liao; Mianlun Zheng; Weixu Zhu; Guian Zhang; Munan Ning },
publisher = {IEEE SigPort},
title = {A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle},
year = {2017} }
TY - EJOUR
T1 - A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle
AU - Qianqian Tong; Zhiyong Yuan; Xiangyun Liao; Mianlun Zheng; Weixu Zhu; Guian Zhang; Munan Ning
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2242
ER -
Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning. (2017). A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle. IEEE SigPort. http://sigport.org/2242
Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning, 2017. A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle. Available at: http://sigport.org/2242.
Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning. (2017). "A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle." Web.
1. Qianqian Tong, Zhiyong Yuan, Xiangyun Liao, Mianlun Zheng, Weixu Zhu, Guian Zhang, Munan Ning. A Joint Multi-scale Convolutional Network for Fully Automatic Segmentation of the Left Ventricle [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2242

WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES


Convolutional neural networks (CNNs) show impressive performance for image classification and detection, extending heavily to the medical image domain. Nevertheless, medical experts are skeptical in these predictions as the nonlinear multilayer structure resulting in a classification outcome is not directly graspable. Recently, approaches have been shown which help the user to understand the discriminative regions within an image which are decisive for the CNN to conclude to a certain class.

Paper Details

Authors:
Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch
Submitted On:
16 September 2017 - 10:03am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP_2017_Koehler_localization_diabetic_retinopathy_retina_3463.pdf

(418)

Subscribe

[1] Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch, "WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2194. Accessed: Sep. 20, 2020.
@article{2194-17,
url = {http://sigport.org/2194},
author = {Waleed M. Gondal; Jan M. Koehler; Rène Grzeszick; Gernot A. Fink; and Michael Hirsch },
publisher = {IEEE SigPort},
title = {WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES},
year = {2017} }
TY - EJOUR
T1 - WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES
AU - Waleed M. Gondal; Jan M. Koehler; Rène Grzeszick; Gernot A. Fink; and Michael Hirsch
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2194
ER -
Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch. (2017). WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES. IEEE SigPort. http://sigport.org/2194
Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch, 2017. WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES. Available at: http://sigport.org/2194.
Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch. (2017). "WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES." Web.
1. Waleed M. Gondal, Jan M. Koehler, Rène Grzeszick, Gernot A. Fink, and Michael Hirsch. WEAKLY-SUPERVISED LOCALIZATION OF DIABETIC RETINOPATHY LESIONS IN RETINAL FUNDUS IMAGES [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2194

CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION


Optic Disc (OD) detection in retinal fundus images is a cru-cial stage for the automation of a screening system in diabetic ophthalmology. Most researches for automatic localization of OD benefit the regions of vessels. In this paper, we present a fast and novel method based on the Circlet Transform to detect OD in digital retinal fundus images that doesn’t utilize the location of the vessels. First, each R, G and B band is enhanced using CLAHE method. Then, the enhanced image in RGB color space is converted to L*a*b one.

Paper Details

Authors:
Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi
Submitted On:
15 September 2017 - 10:05am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

2017 ICIP Optic Disk Poster.pdf

(83)

Subscribe

[1] Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi, "CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2137. Accessed: Sep. 20, 2020.
@article{2137-17,
url = {http://sigport.org/2137},
author = {Omid Sarrafzadeh; Hossein Rabbani; Alireza Mehri Dehnavi },
publisher = {IEEE SigPort},
title = {CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION},
year = {2017} }
TY - EJOUR
T1 - CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION
AU - Omid Sarrafzadeh; Hossein Rabbani; Alireza Mehri Dehnavi
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2137
ER -
Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi. (2017). CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION. IEEE SigPort. http://sigport.org/2137
Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi, 2017. CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION. Available at: http://sigport.org/2137.
Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi. (2017). "CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION." Web.
1. Omid Sarrafzadeh, Hossein Rabbani, Alireza Mehri Dehnavi. CIRCLET BASED FRAMEWORK FOR OPTIC DISK DETECTION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2137

DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES


Accurate detection of microaneurysm (MA) plays a very important role in early diagnosis of diabetic retinopathy. This paper presents a novel method based on the variation of local intensity for microaneurysms detection in retinal images. In contribution, proposed method use local rank transform effectively

Paper Details

Authors:
Ravi Kamble , Manesh Kokare
Submitted On:
15 September 2017 - 5:02am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Paper_2602_ICIP_2017.pdf

(251)

Subscribe

[1] Ravi Kamble , Manesh Kokare, "DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2113. Accessed: Sep. 20, 2020.
@article{2113-17,
url = {http://sigport.org/2113},
author = {Ravi Kamble ; Manesh Kokare },
publisher = {IEEE SigPort},
title = {DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES},
year = {2017} }
TY - EJOUR
T1 - DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES
AU - Ravi Kamble ; Manesh Kokare
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2113
ER -
Ravi Kamble , Manesh Kokare. (2017). DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES. IEEE SigPort. http://sigport.org/2113
Ravi Kamble , Manesh Kokare, 2017. DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES. Available at: http://sigport.org/2113.
Ravi Kamble , Manesh Kokare. (2017). "DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES." Web.
1. Ravi Kamble , Manesh Kokare. DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2113

Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation


Automated segmentation of retinal blood vessels plays an important role in the computer aided diagnosis of retinal diseases. The paper presents a new formulation of patch-based fully Convolutional Neural Networks (CNNs) that allows accurate segmentation of the retinal blood vessels. A major modification in this retinal blood vessel segmentation task is to improve and speed-up the patch-based fully CNN training by local entropy sampling and a skip CNN architecture with class-balancing loss.

Paper Details

Authors:
Jie Yang, Lixiu Yao
Submitted On:
14 September 2017 - 4:07am
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

icip2017.pdf

(588)

Subscribe

[1] Jie Yang, Lixiu Yao, "Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1998. Accessed: Sep. 20, 2020.
@article{1998-17,
url = {http://sigport.org/1998},
author = {Jie Yang; Lixiu Yao },
publisher = {IEEE SigPort},
title = {Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation},
year = {2017} }
TY - EJOUR
T1 - Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation
AU - Jie Yang; Lixiu Yao
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1998
ER -
Jie Yang, Lixiu Yao. (2017). Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation. IEEE SigPort. http://sigport.org/1998
Jie Yang, Lixiu Yao, 2017. Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation. Available at: http://sigport.org/1998.
Jie Yang, Lixiu Yao. (2017). "Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation." Web.
1. Jie Yang, Lixiu Yao. Patch-based Fully Convolutional Neural Network With Skip Connections For Retinal Blood Vessel Segmentation [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1998

Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features


Through the years, several CAD systems have been developed to help radiologists in the hard task of detecting signs
of cancer in mammograms. In these CAD systems, mass segmentation plays a central role in the decision process. In the
literature, mass segmentation has been typically evaluated in a intra-sensor scenario, where the methodology is designed and
evaluated in similar data. However, in practice, acquisition systems and PACS from multiple vendors abound and current

Paper Details

Authors:
Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley
Submitted On:
11 September 2017 - 12:50pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017-1957.pdf

(290)

Subscribe

[1] Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley, "Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1914. Accessed: Sep. 20, 2020.
@article{1914-17,
url = {http://sigport.org/1914},
author = {Jaime S. Cardoso; Nuno Marques; Neeraj Dhungel; Gustavo Carneiro; Andrew Bradley },
publisher = {IEEE SigPort},
title = {Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features},
year = {2017} }
TY - EJOUR
T1 - Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features
AU - Jaime S. Cardoso; Nuno Marques; Neeraj Dhungel; Gustavo Carneiro; Andrew Bradley
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1914
ER -
Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley. (2017). Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features. IEEE SigPort. http://sigport.org/1914
Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley, 2017. Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features. Available at: http://sigport.org/1914.
Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley. (2017). "Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features." Web.
1. Jaime S. Cardoso, Nuno Marques, Neeraj Dhungel, Gustavo Carneiro, Andrew Bradley. Mass Segmentation in Mammograms: a Cross-Sensor comparison of deep and tailored features [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1914

Pages