Sorry, you need to enable JavaScript to visit this website.

Fully connected layer is an essential component of Convolutional Neural Networks (CNNs), which demonstrates its efficiency in computer vision tasks. The CNN process usually starts with convolution and pooling layers that first break down the input images into features, and then analyze them independently. The result of this process feeds into a fully connected neural network structure which drives the final classification decision. In this paper, we propose a Kernelized Dense Layer (KDL) which captures higher order feature interactions instead of conventional linear relations.

Categories:
11 Views

Intelligent transportation is a complex system that involves the interaction of connected technologies, including Smart Sensors, Intelligent and Autonomous Vehicles, High Precision Maps, and 5G. The coordination of all these machines mandates a common language that serves as a protocol for intelligent machines to communicate. International standards serve as the global protocol to satisfy industry needs at the product level. MPEG-CDVA is the official ISO standard for search and retrieval applications by providing Compact Descriptors for Video Analysis (CDVA).

Categories:
112 Views

This paper presents two variations of architecture referred to as RANet and BIRANet. The proposed architecture aims to use radar signal data along with RGB camera images to form a robust detection network that works efficiently, even in variable lighting and weather conditions such as rain, dust, fog, and others. First, radar information is fused in the feature extractor network. Second, radar points are used to generate guided anchors. Third, a method is proposed to improve region proposal network targets.

Categories:
37 Views

In this paper, we consider the design of deep neural networks augmented with multiple auxiliary classifiers departing from the main (backbone) network. These classifiers can be used to perform early-exit from the network at various layers, making them convenient for energy-constrained applications such as IoT, embedded devices, or Fog computing. However, designing an optimized early-exit strategy is a difficult task, generally requiring a large amount of manual fine-tuning.

Categories:
110 Views

Recent advances in Voice Activity Detection (VAD) are driven by artificial and Recurrent Neural Networks (RNNs), however, using a VAD system in battery-operated devices requires further power efficiency. This can be achieved by neuromorphic hardware, which enables Spiking Neural Networks (SNNs) to perform inference at very low energy consumption. Spiking networks are characterized by their ability to process information efficiently, in a sparse cascade of binary events in time called spikes.

Categories:
109 Views

The present paper describes singing voice synthesis based on convolutional neural networks (CNNs). Singing voice synthesis systems based on deep neural networks (DNNs) are currently being proposed and are improving the naturalness of synthesized singing voices. As singing voices represent a rich form of expression, a powerful technique to model them accurately is required. In the proposed technique, long-term dependencies of singing voices are modeled by CNNs.

Categories:
117 Views

In this work, we present speech recognition systems for four Ethiopian languages: Amharic, Tigrigna, Oromo and Wolaytta. We have used comparable training corpora of about 20 to 29 hours speech and evaluation speech of about 1 hour for each of the languages. For Amharic and Tigrigna, lexical and language models of different vocabulary size have been developed. For Oromo and Wolaytta, the training lexicons have been used for decoding.

Categories:
145 Views

Learning a joint and coordinated representation between different modalities can improve multimodal emotion recognition. In this paper, we propose a deep representation learning approach for emotion recognition from electroencephalogram (EEG) signals guided by facial electromyogram (EMG) and electrooculogram (EOG) signals. We recorded EEG, EMG and EOG signals from 60 participants who watched 40 short videos and self-reported their emotions.

Categories:
60 Views

Tensor decomposition has been proved to be effective for solving many problems in signal processing and machine learning. Recently, tensor decomposition finds its advantage for compressing deep neural networks. In many applications of deep neural networks, it is critical to reduce the number of parameters and computation workload to accelerate inference speed in deployment of the network. Modern deep neural network consists of multiple layers with multi-array weights where tensor decomposition is a natural way to perform compression.

Categories:
43 Views

Pages