Sorry, you need to enable JavaScript to visit this website.

While we have seen significant advances in automatic summarization for text, research on speech summarization is still limited. In this work, we address the challenge of automatically generating teasers for TED talks. In the first step, we create a corpus for automatic summarization of TED and TEDx talks consisting of the talks' recording, their transcripts and their descriptions. The corpus is used to build a speech summarization system for the task. We adapt and combine pre-trained models for automatic speech recognition (ASR) and text summarization using the collected data.

Categories:
12 Views

We propose a convolutional neural network (CNN) aided factor graphs assisted by mutual information features estimated by a neural network for seizure detection. Specifically, we use neural mutual information estimation to evaluate the correlation between different electroencephalogram (EEG) channels as features. We then use a 1D-CNN to extract extra features from the EEG signals and use both features to estimate the probability of a seizure event. Finally, learned factor graphs are employed to capture the temporal correlation in the signal.

Categories:
17 Views

In the present study, we quantify entrainment characteristics of conversation with the aim of automatic assessment of the severity of autism spectrum disorder (ASD). We focus on pairs of utterances immediate before and after turn-takings, which have prosodic/acoustic similarities.

Categories:
3 Views

Pages