Sorry, you need to enable JavaScript to visit this website.

ICASSP 2019

ICASSP is the world’s largest and most comprehensive technical conference focused on signal processing and its applications. The 2019 conference will feature world-class presentations by internationally renowned speakers, cutting-edge session topics and provide a fantastic opportunity to network with like-minded professionals from around the world. Visit website

Securing smartphone handwritten PIN codes with recurrent neural networks

Paper Details

Authors:
Gaël LE LAN, Vincent FREY
Submitted On:
15 May 2019 - 6:21am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

icassp_3080.pdf

(1)

Keywords

Subscribe

[1] Gaël LE LAN, Vincent FREY, "Securing smartphone handwritten PIN codes with recurrent neural networks", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4521. Accessed: May. 23, 2019.
@article{4521-19,
url = {http://sigport.org/4521},
author = {Gaël LE LAN; Vincent FREY },
publisher = {IEEE SigPort},
title = {Securing smartphone handwritten PIN codes with recurrent neural networks},
year = {2019} }
TY - EJOUR
T1 - Securing smartphone handwritten PIN codes with recurrent neural networks
AU - Gaël LE LAN; Vincent FREY
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4521
ER -
Gaël LE LAN, Vincent FREY. (2019). Securing smartphone handwritten PIN codes with recurrent neural networks. IEEE SigPort. http://sigport.org/4521
Gaël LE LAN, Vincent FREY, 2019. Securing smartphone handwritten PIN codes with recurrent neural networks. Available at: http://sigport.org/4521.
Gaël LE LAN, Vincent FREY. (2019). "Securing smartphone handwritten PIN codes with recurrent neural networks." Web.
1. Gaël LE LAN, Vincent FREY. Securing smartphone handwritten PIN codes with recurrent neural networks [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4521

Dimensional Analysis of Laughter in Female Conversational Speech


How do people hear laughter in expressive, unprompted speech? What is the range of expressivity and function of laughter in this speech, and how can laughter inform the recognition of higher-level expressive dimensions in a corpus? This paper presents a scalable method for collecting natural human description of laughter, transforming the description to a vector of quantifiable laughter dimensions, and deriving baseline classifiers for the different dimensions of expressive laughter.

Paper Details

Authors:
Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios
Submitted On:
15 May 2019 - 2:50am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP_Laughter_Paper_36x48_v5_final_for_printing.pdf

(2)

Subscribe

[1] Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios, "Dimensional Analysis of Laughter in Female Conversational Speech", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4520. Accessed: May. 23, 2019.
@article{4520-19,
url = {http://sigport.org/4520},
author = {Mary Pietrowicz; Carla Agurto; Jonah Casebeer; Mark Hasegawa-Johnson; Karrie Karahalios },
publisher = {IEEE SigPort},
title = {Dimensional Analysis of Laughter in Female Conversational Speech},
year = {2019} }
TY - EJOUR
T1 - Dimensional Analysis of Laughter in Female Conversational Speech
AU - Mary Pietrowicz; Carla Agurto; Jonah Casebeer; Mark Hasegawa-Johnson; Karrie Karahalios
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4520
ER -
Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios. (2019). Dimensional Analysis of Laughter in Female Conversational Speech. IEEE SigPort. http://sigport.org/4520
Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios, 2019. Dimensional Analysis of Laughter in Female Conversational Speech. Available at: http://sigport.org/4520.
Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios. (2019). "Dimensional Analysis of Laughter in Female Conversational Speech." Web.
1. Mary Pietrowicz, Carla Agurto, Jonah Casebeer, Mark Hasegawa-Johnson, Karrie Karahalios. Dimensional Analysis of Laughter in Female Conversational Speech [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4520

END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR


The speech chain mechanism integrates automatic speech recognition (ASR) and text-to-speech synthesis (TTS) modules into a single cycle during training. In our previous work, we applied a speech chain mechanism as a semi-supervised learning. It provides the ability for ASR and TTS to assist each other when they receive unpaired data and let them infer the missing pair and optimize the model with reconstruction loss.

Paper Details

Authors:
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura
Submitted On:
14 May 2019 - 8:26pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICASSP19_Poster_V1.pdf

(5)

Subscribe

[1] Andros Tjandra, Sakriani Sakti, Satoshi Nakamura, "END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4519. Accessed: May. 23, 2019.
@article{4519-19,
url = {http://sigport.org/4519},
author = {Andros Tjandra; Sakriani Sakti; Satoshi Nakamura },
publisher = {IEEE SigPort},
title = {END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR},
year = {2019} }
TY - EJOUR
T1 - END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR
AU - Andros Tjandra; Sakriani Sakti; Satoshi Nakamura
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4519
ER -
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura. (2019). END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR. IEEE SigPort. http://sigport.org/4519
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura, 2019. END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR. Available at: http://sigport.org/4519.
Andros Tjandra, Sakriani Sakti, Satoshi Nakamura. (2019). "END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR." Web.
1. Andros Tjandra, Sakriani Sakti, Satoshi Nakamura. END-TO-END FEEDBACK LOSS IN SPEECH CHAIN FRAMEWORK VIA STRAIGHT-THROUGH ESTIMATOR [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4519

BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION

Paper Details

Authors:
Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang
Submitted On:
14 May 2019 - 8:05pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

BLHUC BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION.pdf

(5)

Subscribe

[1] Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang, "BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4518. Accessed: May. 23, 2019.
@article{4518-19,
url = {http://sigport.org/4518},
author = {Xurong Xie; Xunying Liu; Tan Lee; Shoukang Hu; Lan Wang },
publisher = {IEEE SigPort},
title = {BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION},
year = {2019} }
TY - EJOUR
T1 - BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION
AU - Xurong Xie; Xunying Liu; Tan Lee; Shoukang Hu; Lan Wang
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4518
ER -
Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang. (2019). BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION. IEEE SigPort. http://sigport.org/4518
Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang, 2019. BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION. Available at: http://sigport.org/4518.
Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang. (2019). "BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION." Web.
1. Xurong Xie, Xunying Liu, Tan Lee, Shoukang Hu, Lan Wang. BLHUC: BAYESIAN LEARNING OF HIDDEN UNIT CONTRIBUTIONS FOR DEEP NEURAL NETWORK SPEAKER ADAPTATION [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4518

Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier

Paper Details

Authors:
Li Li, Hirokazu Kameoka, Shoji Makino
Submitted On:
14 May 2019 - 5:47pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Li2019ICASSP05poster_v2.pdf

(2)

Subscribe

[1] Li Li, Hirokazu Kameoka, Shoji Makino, "Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4515. Accessed: May. 23, 2019.
@article{4515-19,
url = {http://sigport.org/4515},
author = {Li Li; Hirokazu Kameoka; Shoji Makino },
publisher = {IEEE SigPort},
title = {Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier},
year = {2019} }
TY - EJOUR
T1 - Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier
AU - Li Li; Hirokazu Kameoka; Shoji Makino
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4515
ER -
Li Li, Hirokazu Kameoka, Shoji Makino. (2019). Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier. IEEE SigPort. http://sigport.org/4515
Li Li, Hirokazu Kameoka, Shoji Makino, 2019. Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier. Available at: http://sigport.org/4515.
Li Li, Hirokazu Kameoka, Shoji Makino. (2019). "Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier." Web.
1. Li Li, Hirokazu Kameoka, Shoji Makino. Fast MVAE: Joint separation and classification of mixed sources based on multichannel variational autoencoder with auxiliary classifier [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4515

Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder

Paper Details

Authors:
Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino
Submitted On:
14 May 2019 - 5:42pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

AASP_L4_2.pdf

(5)

Subscribe

[1] Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino, "Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4514. Accessed: May. 23, 2019.
@article{4514-19,
url = {http://sigport.org/4514},
author = {Hirokazu Kameoka; Li Li; Shogo Seki; Shoji Makino },
publisher = {IEEE SigPort},
title = {Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder},
year = {2019} }
TY - EJOUR
T1 - Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder
AU - Hirokazu Kameoka; Li Li; Shogo Seki; Shoji Makino
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4514
ER -
Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino. (2019). Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder. IEEE SigPort. http://sigport.org/4514
Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino, 2019. Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder. Available at: http://sigport.org/4514.
Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino. (2019). "Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder." Web.
1. Hirokazu Kameoka, Li Li, Shogo Seki, Shoji Makino. Joint Separation and Dereverberation of Reverberant Mixture with Multichannel Variational Autoencoder [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4514

Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data

Paper Details

Authors:
Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu
Submitted On:
15 May 2019 - 3:11am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Slides.pdf

(642)

Subscribe

[1] Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu, "Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4513. Accessed: May. 23, 2019.
@article{4513-19,
url = {http://sigport.org/4513},
author = {Jun Wang; Dan Su; Jie Chen; Shulin Feng; Dongpeng Ma; Na Li; Dong Yu },
publisher = {IEEE SigPort},
title = {Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data},
year = {2019} }
TY - EJOUR
T1 - Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data
AU - Jun Wang; Dan Su; Jie Chen; Shulin Feng; Dongpeng Ma; Na Li; Dong Yu
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4513
ER -
Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu. (2019). Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data. IEEE SigPort. http://sigport.org/4513
Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu, 2019. Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data. Available at: http://sigport.org/4513.
Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu. (2019). "Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data." Web.
1. Jun Wang, Dan Su, Jie Chen, Shulin Feng, Dongpeng Ma, Na Li, Dong Yu. Learning Discriminative Features in Sequence Training without Requiring Framewise Labelled Data [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4513

INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION


Conformal prediction uses the degree of strangeness (nonconformity) of new data instances to determine the confidence values of new predictions. We propose an inductive conformal predictor for sparse coding classifiers, referred to as ICP-SCC. Our contribution is twofold: first, we present two nonconformitymeasures that produce reliable confidence values; second, we propose a batchmode active learning algorithm within the conformal prediction framework to improve classification performance by selecting training instances based on two criteria, informativeness and diversity.

Paper Details

Authors:
Kenneth E. Barner
Submitted On:
14 May 2019 - 10:41am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster ICASSP 2019

(2)

Subscribe

[1] Kenneth E. Barner, "INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4512. Accessed: May. 23, 2019.
@article{4512-19,
url = {http://sigport.org/4512},
author = {Kenneth E. Barner },
publisher = {IEEE SigPort},
title = {INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION},
year = {2019} }
TY - EJOUR
T1 - INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION
AU - Kenneth E. Barner
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4512
ER -
Kenneth E. Barner. (2019). INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION. IEEE SigPort. http://sigport.org/4512
Kenneth E. Barner, 2019. INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION. Available at: http://sigport.org/4512.
Kenneth E. Barner. (2019). "INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION." Web.
1. Kenneth E. Barner. INDUCTIVE CONFORMAL PREDICTOR FOR SPARSE CODING CLASSIFIERS: APPLICATIONS TO IMAGE CLASSIFICATION [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4512

Phoneme Level Language Models for Sequence Based Low Resource ASR


Building multilingual and crosslingual models help bring different languages together in a language universal space. It allows models to share parameters and transfer knowledge across languages, enabling faster and better adaptation to a new language. These approaches are particularly useful for low resource languages. In this paper, we propose a phoneme-level language model that can be used multilingually and for crosslingual adaptation to a target language.

Paper Details

Authors:
Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze
Submitted On:
14 May 2019 - 10:39am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

PLMs_ICASSP_Poster (1).pdf

(6)

Subscribe

[1] Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze, "Phoneme Level Language Models for Sequence Based Low Resource ASR", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4511. Accessed: May. 23, 2019.
@article{4511-19,
url = {http://sigport.org/4511},
author = {Siddharth Dalmia; Xinjian Li; Alan W Black; Florian Metze },
publisher = {IEEE SigPort},
title = {Phoneme Level Language Models for Sequence Based Low Resource ASR},
year = {2019} }
TY - EJOUR
T1 - Phoneme Level Language Models for Sequence Based Low Resource ASR
AU - Siddharth Dalmia; Xinjian Li; Alan W Black; Florian Metze
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4511
ER -
Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze. (2019). Phoneme Level Language Models for Sequence Based Low Resource ASR. IEEE SigPort. http://sigport.org/4511
Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze, 2019. Phoneme Level Language Models for Sequence Based Low Resource ASR. Available at: http://sigport.org/4511.
Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze. (2019). "Phoneme Level Language Models for Sequence Based Low Resource ASR." Web.
1. Siddharth Dalmia, Xinjian Li, Alan W Black, Florian Metze. Phoneme Level Language Models for Sequence Based Low Resource ASR [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4511

One-Bit Unlimited Sampling


Conventional analog–to–digital converters (ADCs) are limited in dynamic range. If a signal exceeds some prefixed threshold, the ADC saturates and the resulting signal is clipped, thus becoming prone to aliasing artifacts. Recent developments in ADC design allow to overcome this limitation: using modulo operation, the so called self-reset ADCs fold amplitudes which exceed the dynamic range. A new (unlimited) sampling theory is currently being developed in the context of this novel class of ADCs.

Paper Details

Authors:
Felix Krahmer
Submitted On:
14 May 2019 - 10:46am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

ICASSP19_GBK.pdf

(2)

Subscribe

[1] Felix Krahmer, "One-Bit Unlimited Sampling", IEEE SigPort, 2019. [Online]. Available: http://sigport.org/4510. Accessed: May. 23, 2019.
@article{4510-19,
url = {http://sigport.org/4510},
author = {Felix Krahmer },
publisher = {IEEE SigPort},
title = {One-Bit Unlimited Sampling},
year = {2019} }
TY - EJOUR
T1 - One-Bit Unlimited Sampling
AU - Felix Krahmer
PY - 2019
PB - IEEE SigPort
UR - http://sigport.org/4510
ER -
Felix Krahmer. (2019). One-Bit Unlimited Sampling. IEEE SigPort. http://sigport.org/4510
Felix Krahmer, 2019. One-Bit Unlimited Sampling. Available at: http://sigport.org/4510.
Felix Krahmer. (2019). "One-Bit Unlimited Sampling." Web.
1. Felix Krahmer. One-Bit Unlimited Sampling [Internet]. IEEE SigPort; 2019. Available from : http://sigport.org/4510

Pages