Sorry, you need to enable JavaScript to visit this website.

ICASSP 2021 - IEEE International Conference on Acoustics, Speech and Signal Processing is the world’s largest and most comprehensive technical conference focused on signal processing and its applications. The ICASSP 2021 conference will feature world-class presentations by internationally renowned speakers, cutting-edge session topics and provide a fantastic opportunity to network with like-minded professionals from around the world. Visit website.

Over the last decade the relative latency of access to shared memory by multicore increased as wire resistance dominated latency and low wire density layout pushed multi-port memories farther away from their ports. Various techniques were deployed to improve average memory access latencies, such as speculative pre-fetching and branch-prediction, often leading to high variance in execution time which is unacceptable in real-time systems. Smart DMAs can be used

Categories:
21 Views

We introduce a new Nonnegative Matrix Factorization (NMF) model called Nonnegative Unimodal Matrix Factorization (NuMF), which adds on top of NMF the unimodal condition on the columns of the basis matrix. NuMF finds applications for example in analytical chemistry. We propose a simple but naive brute-force heuristics strategy based on accelerated projected gradient. It is then improved by using multi-grid for which we prove that the restriction operator preserves the unimodality.

Categories:
9 Views

We introduce a new Nonnegative Matrix Factorization (NMF) model called Nonnegative Unimodal Matrix Factorization (NuMF), which adds on top of NMF the unimodal condition on the columns of the basis matrix. NuMF finds applications for example in analytical chemistry. We propose a simple but naive brute-force heuristics strategy based on accelerated projected gradient. It is then improved by using multi-grid for which we prove that the restriction operator preserves the unimodality.

Categories:
20 Views

In this paper, we present a deep-learning-based framework for audio-visual speech inpainting, i.e. the task of restoring the missing parts of an acoustic speech signal from reliable audio context and uncorrupted visual information. Recent work focuses solely on audio-only methods and they generally aim at inpainting music signals, which show highly different structure than speech. Instead, we inpaint speech signals with gaps ranging from 100 ms to 1600 ms to investigate the contribution that vision can provide for gaps of different duration.

Categories:
10 Views

In this paper, we present a deep-learning-based framework for audio-visual speech inpainting, i.e. the task of restoring the missing parts of an acoustic speech signal from reliable audio context and uncorrupted visual information. Recent work focuses solely on audio-only methods and they generally aim at inpainting music signals, which show highly different structure than speech. Instead, we inpaint speech signals with gaps ranging from 100 ms to 1600 ms to investigate the contribution that vision can provide for gaps of different duration.

Categories:
17 Views

With the rapid growth of data sharing through social media networks, determining relevant data items concerning a particular subject becomes paramount. We address the issue of establishing which images represent an event of interest through a semi-supervised learning technique. The method learns consistent and shared features related to an event (from a small set of examples) to propagate them to an unlabeled set. We investigate the behavior of five image feature representations considering low- and high-level features and their combinations.

Categories:
20 Views

In this paper the problem of restoration of unsupervised nonnegative sparse signals is addressed in the Bayesian framework. We introduce a new probabilistic hierarchical prior, based on the Generalized Hyperbolic (GH) distribution, which explicitly accounts for sparsity. On the one hand, this new prior allows us to take into account the non-negativity.

Categories:
5 Views

Hypothesis-level combination between multiple models can often yield gains in speech recognition. However, all models in the ensemble are usually restricted to use the same audio segmentation times. This paper proposes to generalise hypothesis-level combination, allowing the use of different audio segmentation times between the models, by splitting and re-joining the hypothesised N-best lists in time. A hypothesis tree method is also proposed to distribute hypothesis posteriors among the constituent words, to facilitate such splitting when per-word scores are not available.

Categories:
7 Views

Pages