Sorry, you need to enable JavaScript to visit this website.

Audio codecs are typically transform-domain based and efficiently code stationary audio signals, but they struggle with speech and signals containing dense transient events such as applause. Specifically, with these two classes of signals as examples, we demonstrate a technique for restoring audio from coding noise based on generative adversarial networks (GAN). A primary advantage of the proposed GAN-based coded audio enhancer is that the method operates end-to-end directly on decoded audio samples, eliminating the need to design any manually-crafted frontend.


In supervised machine learning, the assumption that training data is labelled correctly is not always satisfied. In this paper, we investigate an instance of labelling error for classification tasks in which the dataset is corrupted with out-of-distribution (OOD) instances: data that does not belong to any of the target classes, but is labelled as such. We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.


This paper presents a domain adaptation model for sound event detection. A common challenge for sound event detection is how to deal with the mismatch among different datasets. Typically, the performance of a model will decrease if it is tested on a dataset which is different from the one that the model is trained on. To address this problem, based on convolutional recurrent neural networks (CRNNs), we propose an adapted CRNN (A-CRNN) as an unsupervised adversarial domain adaptation model for sound event detection.


Polyphonic sound event detection and direction-of-arrival estimation require different input features from audio signals. While sound event detection mainly relies on time-frequency patterns, direction-of-arrival estimation relies on magnitude or phase differences between microphones. Previous approaches use the same input features for sound event detection and direction-of-arrival estimation, and train the two tasks jointly or in a two-stage transfer-learning manner.


Time-delay estimation is an essential building block of many signal processing applications. This paper follows up on earlier work for acoustic source localization and time delay estimation using pattern recognition techniques; it presents high performance results obtained with supervised training of neural networks which challenge the state of the art and compares its performance to that of well-known methods such as the Generalized Cross-Correlation or Adaptive Eigenvalue Decomposition.