Sorry, you need to enable JavaScript to visit this website.

Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a single-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC).

Categories:
126 Views

Acoustic differences between children’s and adults’ speech causes the degradation in the automatic speech recognition system performance when system trained on adults’ speech and tested on children’s speech. The key acoustic mismatch factors are formant, speaking rate, and pitch. In this paper, we proposed a linear prediction based spectral warping method by using the knowledge of vowel and non-vowel regions in speech signals to mitigate the formant frequencies differences between child and adult speakers.

Categories:
18 Views

In this paper, we study zero-shot learning in audio classification through factored linear and nonlinear acoustic-semantic projections between audio instances and sound classes. Zero-shot learning in audio classification refers to classification problems that aim at recognizing audio instances of sound classes, which have no available training data but only semantic side information. In this paper, we address zero-shot learning by employing factored linear and nonlinear acoustic-semantic projections.

Categories:
17 Views

To improve device robustness, a highly desirable key feature of a competitive data-driven acoustic scene classification (ASC) system, a novel two-stage system based on fully convolutional neural networks (CNNs) is proposed. Our two-stage system leverages on an ad-hoc score combination based on two CNN classifiers: (i) the first CNN classifies acoustic inputs into one of three broad classes, and (ii) the second CNN classifies the same inputs into one of ten finergrained classes.

Categories:
10 Views

Neural text-to-speech (TTS) approaches generally require a huge number of high quality speech data, which makes it difficult to obtain such a dataset with extra emotion labels. In this paper, we propose a novel approach for emotional TTS synthesis on a TTS dataset without emotion labels. Specifically, our proposed method consists of a cross-domain speech emotion recognition (SER) model and an emotional TTS model. Firstly, we train the cross-domain SER model on both SER and TTS datasets.

Categories:
13 Views

We propose a complex-valued deep neural network (cDNN) for speech enhancement and source separation. While existing end-to-end systems use complex-valued gradients to pass the training error to a real-valued DNN used for gain mask estimation, we use the full potential of complex-valued LSTMs, MLPs and activation functions to estimate complex-valued beamforming weights directly from complex-valued microphone array data. By doing so, our cDNN is able to locate and track different moving sources by exploiting the phase information in the data.

Categories:
91 Views

Pages