- Bayesian learning; Bayesian signal processing (MLR-BAYL)
- Bounds on performance (MLR-PERF)
- Applications in Systems Biology (MLR-SYSB)
- Applications in Music and Audio Processing (MLR-MUSI)
- Applications in Data Fusion (MLR-FUSI)
- Cognitive information processing (MLR-COGP)
- Distributed and Cooperative Learning (MLR-DIST)
- Learning theory and algorithms (MLR-LEAR)
- Neural network learning (MLR-NNLR)
- Information-theoretic learning (MLR-INFO)
- Independent component analysis (MLR-ICAN)
- Graphical and kernel methods (MLR-GRKN)
- Other applications of machine learning (MLR-APPL)
- Pattern recognition and classification (MLR-PATT)
- Source separation (MLR-SSEP)
- Sequential learning; sequential decision methods (MLR-SLER)
This paper demonstrates the ability to accurately detect the movement state of Madagascar hissing cockroaches equipped with a custom board containing a five degree of freedom inertial measurement unit. The cockroach moves freely through an unobstructed arena while wirelessly transmitting its accelerometer and gyroscope data. Multiple window sizes, features, and classifiers are assessed. An in-depth analysis of the classification results is performed to better understand the strengths and weaknesses of the classifier and feature set.
- Categories:
- Read more about MIXTURE SOURCE IDENTIFICATION IN NON-STATIONARY DATA STREAMS WITH APPLICATIONS IN COMPRESSION
- Log in to post comments
- Categories:
- Read more about A KNOWLEDGE TRANSFER AND BOOSTING APPROACH TO THE PREDICTION OF AFFECT IN MOVIES
- Log in to post comments
Affect prediction is a classical problem and has recently garnered special interest in multimedia applications. Affect prediction in movies is one such domain, potentially aiding the design as well as the impact analysis of movies.Given the large diversity in movies (such as different genres and languages), obtaining a comprehensive movie dataset for modeling affect is challenging while models trained on smaller datasets may not generalize. In this paper, we address the problem of continuous affect ratings with the availability of limited in-domain data resources.
SigPort.zip
- Categories:
- Read more about Dual-Tree Wavelet Scattering Network with Parametric Log Transformation for Object Classification
- Log in to post comments
- Categories:
- Read more about Fast Exemplar Selection Algorithm for Matrix Approximation and Representation: A Variant oASIS Algorithm
- Log in to post comments
Extracting inherent patterns from large data using decompositions of
data matrix by a sampled subset of exemplars has found many applications
in machine learning. We propose a computationally efficient
algorithm for adaptive exemplar sampling, called fast exemplar selection
(FES). The proposed algorithm can be seen as an efficient
variant of the oASIS algorithm (Patel et al). FES iteratively selects incoherent
exemplars based on the exemplars that are already sampled.
This is done by ensuring that the selected exemplars forms a positive
- Categories:
- Read more about Approximate Support Recovery of Atomic Line Spectral Estimation: A Tale of Resolution and Precision
- Log in to post comments
This work investigates the parameter estimation performance of super-resolution line spectral estimation using atomic norm minimization. The focus is on analyzing the algorithm's accuracy of inferring the frequencies and complex magnitudes from noisy observations. When the Signal-to-Noise Ratio is reasonably high and the true frequencies are separated by $O(\frac{1}{n})$, the atomic norm estimator is shown to localize the correct number of frequencies, each within a neighborhood of size $O(\sqrt{\frac{\log n}{n^3}} \sigma)$ of one of the true frequencies.
- Categories:
- Read more about Minimum-Volume Weighted Symmetric Nonnegative Matrix Factorization for Clustering
- Log in to post comments
In recent years, nonnegative matrix factorization (NMF) attracts much attention in machine learning and signal processing fields due to its interpretability of data in a low dimensional subspace. For clustering problems, symmetric nonnegative matrix factorization (SNMF) as an extension of NMF factorizes the similarity matrix of data points directly and outperforms NMF when dealing with nonlinear data structure. However, the clustering results of SNMF is very sensitive to noisy data.
- Categories:
- Read more about Recurrent neural networks for polyphonic sound event detection in real life recordings
- Log in to post comments
Slides from the presentation held at ICASSP 2016 for the paper: Recurrent neural networks for polyphonic sound event detection in real life recordings
- Categories:
- Read more about FILTERBANK LEARNING USING CONVOLUTIONAL RESTRICTED BOLTZMANN MACHINE FOR SPEECH RECOGNITION
- Log in to post comments
Convolutional Restricted Boltzmann Machine (ConvRBM) as a model for speech signal is presented in this paper. We have
developed ConvRBM with sampling from noisy rectified linear units (NReLUs). ConvRBM is trained in an unsupervised way to model speech signal of arbitrary lengths. Weights of the model can represent an auditory-like filterbank. Our
poster.pdf
- Categories:
- Read more about FILTERBANK LEARNING USING CONVOLUTIONAL RESTRICTED BOLTZMANN MACHINE FOR SPEECH RECOGNITION
- Log in to post comments
Convolutional Restricted Boltzmann Machine (ConvRBM) as a model for speech signal is presented in this paper. We have
developed ConvRBM with sampling from noisy rectified linear units (NReLUs). ConvRBM is trained in an unsupervised way to model speech signal of arbitrary lengths. Weights of the model can represent an auditory-like filterbank. Our
poster.pdf
- Categories: