- Bayesian learning; Bayesian signal processing (MLR-BAYL)
- Bounds on performance (MLR-PERF)
- Applications in Systems Biology (MLR-SYSB)
- Applications in Music and Audio Processing (MLR-MUSI)
- Applications in Data Fusion (MLR-FUSI)
- Cognitive information processing (MLR-COGP)
- Distributed and Cooperative Learning (MLR-DIST)
- Learning theory and algorithms (MLR-LEAR)
- Neural network learning (MLR-NNLR)
- Information-theoretic learning (MLR-INFO)
- Independent component analysis (MLR-ICAN)
- Graphical and kernel methods (MLR-GRKN)
- Other applications of machine learning (MLR-APPL)
- Pattern recognition and classification (MLR-PATT)
- Source separation (MLR-SSEP)
- Sequential learning; sequential decision methods (MLR-SLER)
- Read more about ASSESSING THE PROGNOSTIC IMPACT OF 3D CT IMAGE TUMOUR RIND TEXTURE FEATURES ON LUNG CANCER SURVIVAL MODELLING
- Log in to post comments
In this paper we examine a technique for developing prognostic image characteristics, termed radiomics, for non-small cell lung cancer based on a tumour edge region-based analysis. Texture features were extracted from the rind of the tumour in a publicly available 3D CT data set to predict two-year survival. The derived models were compared against the previous methods of training radiomic signatures that are descriptive of the whole tumour volume. Radiomic features derived solely from regions external, but neighbouring, the tumour were shown to also have prognostic value.
- Categories:
- Read more about Adaptive Basis Selection for Compressed Sensing in Robotic Tactile Skins
- Log in to post comments
- Categories:
- Categories:
- Read more about COMBINATORIAL MULTI-ARMED BANDIT PROBLEM WITH PROBABILISTICALLY TRIGGERED ARMS: A CASE WITH BOUNDED REGRET
- 1 comment
- Log in to post comments
- Categories:
- Read more about Generating Forbidden Region Virtual Fixtures By Classification of Movement Intention Based on Event-Related Desynchronization
- Log in to post comments
The development of children’s cognitive and perceptual skills depends heavily on object exploration and manipulative experiences. New types of robotic assistive technologies that enable children with disabilities to interact with their environment, which prove to be beneficial for their cognitive and perceptual skills development, have emerged in recent years. In this study, a human-robot interface that uses Event-Related Desynchronization (ERD) brain response during movement was developed.
- Categories:
- Read more about Poster for GlobalSIP 2017 Paper #1180: The Impact of Sports Sentiment on Stock Returns: A Case Study from Professional Sports Leagues
- Log in to post comments
poster.pdf
- Categories:
- Read more about Sparse Modeling in Image Processing and Deep Learning (Keynote Talk)
- Log in to post comments
Sparse approximation is a well-established theory, with a profound impact on the fields of signal and image processing. In this talk we start by presenting this model and its features, and then turn to describe two special cases of it – the convolutional sparse coding (CSC) and its multi-layered version (ML-CSC). Amazingly, as we will carefully show, ML-CSC provides a solid theoretical foundation to … deep-learning.
- Categories:
Voxels are an effective approach to 3D mesh and point cloud classification because they build upon mature Convolutional Neural Network concepts. We show however that their cubic increase in dimensionality is unsuitable for more challenging problems such as object detection in a complex point cloud scene. We observe that 3D meshes are analogous to graph data and can thus be treated with graph signal processing techniques.
- Categories:
- Read more about Greedy Deep Transform Learning
- Log in to post comments
We introduce deep transform learning – a new
tool for deep learning. Deeper representation is learnt by
stacking one transform after another. The learning proceeds in
a greedy way. The first layer learns the transform and features
from the input training samples. Subsequent layers use the
features (after activation) from the previous layers as training
input. Experiments have been carried out with other deep
representation learning tools – deep dictionary learning,
stacked denoising autoencoder, deep belief network and PCANet
- Categories: