Sorry, you need to enable JavaScript to visit this website.

Machine Learning for Signal Processing

Sparse Discriminative Tensor Dictionary Learning for Object Classification

Paper Details

Authors:
Submitted On:
27 November 2018 - 12:57pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Sparse_Discriminative_Tensor_Dictionary_Learning_for_Object_Classification.pdf

(44)

Subscribe

[1] , "Sparse Discriminative Tensor Dictionary Learning for Object Classification", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3814. Accessed: May. 23, 2019.
@article{3814-18,
url = {http://sigport.org/3814},
author = { },
publisher = {IEEE SigPort},
title = {Sparse Discriminative Tensor Dictionary Learning for Object Classification},
year = {2018} }
TY - EJOUR
T1 - Sparse Discriminative Tensor Dictionary Learning for Object Classification
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3814
ER -
. (2018). Sparse Discriminative Tensor Dictionary Learning for Object Classification. IEEE SigPort. http://sigport.org/3814
, 2018. Sparse Discriminative Tensor Dictionary Learning for Object Classification. Available at: http://sigport.org/3814.
. (2018). "Sparse Discriminative Tensor Dictionary Learning for Object Classification." Web.
1. . Sparse Discriminative Tensor Dictionary Learning for Object Classification [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3814

GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION

Paper Details

Authors:
Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu
Submitted On:
27 November 2018 - 2:22am
Short Link:
Type:
Event:

Document Files

段一平GlobalSIP_poster_final.pdf

(10)

Subscribe

[1] Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu, "GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3806. Accessed: May. 23, 2019.
@article{3806-18,
url = {http://sigport.org/3806},
author = {Xiaoming Tao; Mai Xu; Chaoyi Han; Jianhua Lu },
publisher = {IEEE SigPort},
title = {GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION},
year = {2018} }
TY - EJOUR
T1 - GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION
AU - Xiaoming Tao; Mai Xu; Chaoyi Han; Jianhua Lu
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3806
ER -
Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu. (2018). GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION. IEEE SigPort. http://sigport.org/3806
Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu, 2018. GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION. Available at: http://sigport.org/3806.
Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu. (2018). "GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION." Web.
1. Xiaoming Tao, Mai Xu, Chaoyi Han, Jianhua Lu. GAN-NL: UNSUPERVISED REPRESENTATION LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3806

ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS

Paper Details

Authors:
Babak Barazandeh, Meisam Razaviyayn
Submitted On:
23 November 2018 - 11:48am
Short Link:
Type:
Event:
Paper Code:
Document Year:
Cite

Document Files

Globalsip.pdf

(777)

Subscribe

[1] Babak Barazandeh, Meisam Razaviyayn, "ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3746. Accessed: May. 23, 2019.
@article{3746-18,
url = {http://sigport.org/3746},
author = {Babak Barazandeh; Meisam Razaviyayn },
publisher = {IEEE SigPort},
title = {ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS},
year = {2018} }
TY - EJOUR
T1 - ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS
AU - Babak Barazandeh; Meisam Razaviyayn
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3746
ER -
Babak Barazandeh, Meisam Razaviyayn. (2018). ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS. IEEE SigPort. http://sigport.org/3746
Babak Barazandeh, Meisam Razaviyayn, 2018. ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS. Available at: http://sigport.org/3746.
Babak Barazandeh, Meisam Razaviyayn. (2018). "ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS." Web.
1. Babak Barazandeh, Meisam Razaviyayn. ON THE BEHAVIOR OF THE EXPECTATION-MAXIMIZATION ALGORITHM FOR MIXTURE MODELS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3746

Deep-learning-based pipe leak detection using image-based leak features

Paper Details

Authors:
Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo
Submitted On:
8 October 2018 - 11:29am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

Poster_ICIP2018.pdf

(95)

Subscribe

[1] Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo, "Deep-learning-based pipe leak detection using image-based leak features", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3637. Accessed: May. 23, 2019.
@article{3637-18,
url = {http://sigport.org/3637},
author = {Doo-Byung Yoon; Se Won OH; Gwan Joong Kim; Nae-Soo Kim; Cheol-Sig Pyo },
publisher = {IEEE SigPort},
title = {Deep-learning-based pipe leak detection using image-based leak features},
year = {2018} }
TY - EJOUR
T1 - Deep-learning-based pipe leak detection using image-based leak features
AU - Doo-Byung Yoon; Se Won OH; Gwan Joong Kim; Nae-Soo Kim; Cheol-Sig Pyo
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3637
ER -
Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo. (2018). Deep-learning-based pipe leak detection using image-based leak features. IEEE SigPort. http://sigport.org/3637
Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo, 2018. Deep-learning-based pipe leak detection using image-based leak features. Available at: http://sigport.org/3637.
Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo. (2018). "Deep-learning-based pipe leak detection using image-based leak features." Web.
1. Doo-Byung Yoon, Se Won OH, Gwan Joong Kim, Nae-Soo Kim, Cheol-Sig Pyo. Deep-learning-based pipe leak detection using image-based leak features [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3637

Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information

Paper Details

Authors:
Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim
Submitted On:
8 October 2018 - 11:18am
Short Link:
Type:
Event:
Presenter's Name:

Document Files

ICIP_DoyeobYeo.pdf

(57)

Subscribe

[1] Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim, "Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3636. Accessed: May. 23, 2019.
@article{3636-18,
url = {http://sigport.org/3636},
author = {Ji-Hoon Bae; Junho Yim; Nae-Soo Kim; Cheol-Sig Pyo; Junmo Kim },
publisher = {IEEE SigPort},
title = {Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information},
year = {2018} }
TY - EJOUR
T1 - Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information
AU - Ji-Hoon Bae; Junho Yim; Nae-Soo Kim; Cheol-Sig Pyo; Junmo Kim
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3636
ER -
Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim. (2018). Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information. IEEE SigPort. http://sigport.org/3636
Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim, 2018. Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information. Available at: http://sigport.org/3636.
Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim. (2018). "Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information." Web.
1. Ji-Hoon Bae, Junho Yim, Nae-Soo Kim, Cheol-Sig Pyo, Junmo Kim. Sequential Knowledge Transfer in Teacher-Student Framework using Densely Distilled Flow-Base Information [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3636

AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS


In this paper, we analyse the process of designing a Content-
Based 3D shape Retrieval (CB3DR) adapted for non-experts.
Our CB3DR solution aims at scanning an object on the fly
with a low-cost 3D sensor and retrieve similar shapes from
a database using the 3D point cloud acquired. Our system
should meet the requirements of archaeologists who would
like to be able to acquire artefacts without prior expertise in
scanning, then query easily from the field knowledge bases
for Cultural Heritage, and thus retrieve artefacts (i.e. objects

Paper Details

Authors:
Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso
Submitted On:
12 October 2018 - 5:10am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Icip2018.pptx

(56)

Subscribe

[1] Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso, "AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3595. Accessed: May. 23, 2019.
@article{3595-18,
url = {http://sigport.org/3595},
author = {Lirone Samoun; Thomas Fisichella; Diane Lingrand; Lucas Malleus; Frederic Precioso },
publisher = {IEEE SigPort},
title = {AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS},
year = {2018} }
TY - EJOUR
T1 - AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS
AU - Lirone Samoun; Thomas Fisichella; Diane Lingrand; Lucas Malleus; Frederic Precioso
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3595
ER -
Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso. (2018). AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS. IEEE SigPort. http://sigport.org/3595
Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso, 2018. AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS. Available at: http://sigport.org/3595.
Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso. (2018). "AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS." Web.
1. Lirone Samoun, Thomas Fisichella, Diane Lingrand, Lucas Malleus, Frederic Precioso. AN INTERACTIVE CONTENT-BASED 3D SHAPE RETRIEVAL SYSTEM FOR ON-SITE CULTURAL HERITAGE ANALYSIS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3595

BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION

Paper Details

Authors:
Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala
Submitted On:
5 October 2018 - 4:04am
Short Link:
Type:
Event:
Paper Code:

Document Files

ICIP.pdf

(67)

Subscribe

[1] Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala, "BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3517. Accessed: May. 23, 2019.
@article{3517-18,
url = {http://sigport.org/3517},
author = {Hamed R. Tavakoli; Ali Borji; Rao M. Anwer; Esa Rahtu; Juho Kannala },
publisher = {IEEE SigPort},
title = {BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION},
year = {2018} }
TY - EJOUR
T1 - BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION
AU - Hamed R. Tavakoli; Ali Borji; Rao M. Anwer; Esa Rahtu; Juho Kannala
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3517
ER -
Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala. (2018). BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION. IEEE SigPort. http://sigport.org/3517
Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala, 2018. BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION. Available at: http://sigport.org/3517.
Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala. (2018). "BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION." Web.
1. Hamed R. Tavakoli, Ali Borji, Rao M. Anwer, Esa Rahtu, Juho Kannala. BOTTOM-UP ATTENTION GUIDANCE FOR RECURRENT IMAGE RECOGNITION [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3517

GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS

Paper Details

Authors:
Submitted On:
4 October 2018 - 9:27am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

bsp-poster_cmyk.pdf

(65)

Subscribe

[1] , "GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3401. Accessed: May. 23, 2019.
@article{3401-18,
url = {http://sigport.org/3401},
author = { },
publisher = {IEEE SigPort},
title = {GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS},
year = {2018} }
TY - EJOUR
T1 - GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS
AU -
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3401
ER -
. (2018). GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS. IEEE SigPort. http://sigport.org/3401
, 2018. GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS. Available at: http://sigport.org/3401.
. (2018). "GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS." Web.
1. . GRADIENT BASED EVOLUTION TO OPTIMIZE THE STRUCTURE OF CONVOLUTIONAL NEURAL NETWORKS [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3401

Mobile App User Choice Engineering using Behavioral Science Models


When interacting with mobile apps, users need to take decisions and make certain choices out of a set of alternative ones offered by the app. We introduce optimization problems through which we engineer the choices presented to users so that they are nudged towards decisions that lead to better outcomes for them and for the app platform. User decision-making rules are modeled by using principles from behavioral science and machine learning.

Paper Details

Authors:
Merkourios Karaliopoulos, Iordanis Koutsopoulos
Submitted On:
22 June 2018 - 8:16am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

Poster

(149)

Subscribe

[1] Merkourios Karaliopoulos, Iordanis Koutsopoulos, "Mobile App User Choice Engineering using Behavioral Science Models", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3291. Accessed: May. 23, 2019.
@article{3291-18,
url = {http://sigport.org/3291},
author = {Merkourios Karaliopoulos; Iordanis Koutsopoulos },
publisher = {IEEE SigPort},
title = {Mobile App User Choice Engineering using Behavioral Science Models},
year = {2018} }
TY - EJOUR
T1 - Mobile App User Choice Engineering using Behavioral Science Models
AU - Merkourios Karaliopoulos; Iordanis Koutsopoulos
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3291
ER -
Merkourios Karaliopoulos, Iordanis Koutsopoulos. (2018). Mobile App User Choice Engineering using Behavioral Science Models. IEEE SigPort. http://sigport.org/3291
Merkourios Karaliopoulos, Iordanis Koutsopoulos, 2018. Mobile App User Choice Engineering using Behavioral Science Models. Available at: http://sigport.org/3291.
Merkourios Karaliopoulos, Iordanis Koutsopoulos. (2018). "Mobile App User Choice Engineering using Behavioral Science Models." Web.
1. Merkourios Karaliopoulos, Iordanis Koutsopoulos. Mobile App User Choice Engineering using Behavioral Science Models [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3291

Communication efficient coreset sampling for distributed learning


In this paper, distributed learning is studied using the approach of coreset. In the context of classification, an algorithm of coreset construction is proposed to reduce the redundancy of data and thus the communication requirement, similarly to source coding in traditional data communications. It is shown that the coreset based boosting has a high convergence rate and small sample complexity. Moreover, it is robust to adversary distribution, thus leading to potential applications in distributed learning systems.

Paper Details

Authors:
Yawen Fan, Husheng Li
Submitted On:
20 June 2018 - 9:57am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

poster_v.pdf

(90)

Subscribe

[1] Yawen Fan, Husheng Li, "Communication efficient coreset sampling for distributed learning", IEEE SigPort, 2018. [Online]. Available: http://sigport.org/3258. Accessed: May. 23, 2019.
@article{3258-18,
url = {http://sigport.org/3258},
author = {Yawen Fan; Husheng Li },
publisher = {IEEE SigPort},
title = {Communication efficient coreset sampling for distributed learning},
year = {2018} }
TY - EJOUR
T1 - Communication efficient coreset sampling for distributed learning
AU - Yawen Fan; Husheng Li
PY - 2018
PB - IEEE SigPort
UR - http://sigport.org/3258
ER -
Yawen Fan, Husheng Li. (2018). Communication efficient coreset sampling for distributed learning. IEEE SigPort. http://sigport.org/3258
Yawen Fan, Husheng Li, 2018. Communication efficient coreset sampling for distributed learning. Available at: http://sigport.org/3258.
Yawen Fan, Husheng Li. (2018). "Communication efficient coreset sampling for distributed learning." Web.
1. Yawen Fan, Husheng Li. Communication efficient coreset sampling for distributed learning [Internet]. IEEE SigPort; 2018. Available from : http://sigport.org/3258

Pages