Sorry, you need to enable JavaScript to visit this website.

Time-series clustering involves grouping homogeneous time series together based on certain similarity measures. The mixture AR model (MxAR) has already been developed for time series clustering, as has an associated EM algorithm. How- ever, this EM clustering algorithm fails to perform satisfactorily in large-scale applications due to its high computational complexity. This paper proposes a new algorithm, k-ARs, which is a limiting version of the existing EM algorithm.


3D Morphable Model (3DMM) is a statistical tool widely employed in reconstructing 3D face shape. Existing methods are aimed at predicting 3DMM shape parameters with a single encoder but suffer from unclear distinction of different attributes. To address this problem, Two-Pathway Encoder-Decoder Network (2PEDN) is proposed to regress the identity and expression components via global and local pathways. Specifically, each 2D face image is cropped into global face and local details as the inputs for the corresponding pathways.


Segmenting a document image into text-lines and words finds applications in many research areas of DIA(Document Image Analysis) such as OCR, Word Spotting, and document retrieval. However, carrying out segmentation operation directly in the compressed document images is still an unexplored and challenging research area. Since JPEG is most widely accepted compression algorithm, this research paper attempts to segment a JPEG compressed printed text document image into text-lines and words, without fully decompressing the image.